

HAND IN
Answers Are
Recorded on

Question Paper

QUEEN'S UNIVERSITY
SCHOOL OF COMPUTING

CISC101, FALL TERM, 2009
ELEMENTS OF COMPUTING SCIENCE I
FINAL EXAMINATION
15 December 2009

Instructor: Alan McLeod

This exam refers exclusively to the use of the Python language version 3. Comments are not
required in the code you write. For full marks, code must be efficient as well as correct.

Please write your answers in the boxes provided. The back of any page can be used for rough
work. This exam is 3 hours in length. Please put your student number at the top of each page.
Extra space is provided on the second-to-last page of the exam.

An aid sheet has been appended to the exam. You may detach this page from the exam and do
not have to return it when you hand in your exam, but the proctors can recycle the page for you.

This is a closed book exam. No computers or calculators are allowed or even needed.

PLEASE NOTE: “Proctors are unable to respond to queries about the interpretation of
exam questions. Do your best to answer exam questions as written.”

1. / 15 5. / 15

2. / 15 6. / 15

3. / 6 7. / 15

4. / 9

 TOTAL: / 90

Student Number:

Note for 2010 Students:
Anything with a gray
background covers a topic
that is not applicable to the
Fall 2010 Final exam.

Student Number: _____________________ Page 2 of 13

Problem 1) [15 marks]
The following program runs without any errors. Write the output beside each print() statement:
def main():

 print(7 / 2)

 print(7 // 2)

 print(7.0 // 2.0)

 print(15 % 6)

 print(4 + 8 // 2)

 print((4 + 8) // 2)

 print(5 ** 2)

 print(5 > 2 and 6 == 5)

 print(7 != 7)

 print(10 <= 12 or 7 > 10 and 5 > 3)

 list1 = [1, 2, 3, 4, 5]
 list2 = [7, 8]
 print(list1 + list2)

 print(list2 * 3)

 print(list1[2])

 print(list1[1 : 4])

 print(list2[-1])
main()

Student Number: _____________________ Page 3 of 13

Problem 2) [15 marks]
The following program runs without any errors. Write the output beside each non-empty print()
statement:
def main():

 fodder = [1, 4.5, 6, 7, 10, 11]
 message = "Happy Holidays!"

 print(5 in fodder)

 print(5 not in fodder)

 for val in fodder:
 print(val, end=', ')

 print() # prints a linefeed
 for val in reversed(fodder):
 print(val, end=', ')

 print() # prints a linefeed
 del fodder[1]
 print(fodder)

 print(message.index('H'))

 print(message.count('H'))

 print(message.find('Z'))

 print('day' in message)

 print(message[-1].isalpha())

 print(message.lower())

 print(message)

 # There is a space in the quotes:
 print(message.partition(' '))

main()

Student Number: _____________________ Page 4 of 13

Problem 3) [6 marks]

a) One advance in computer – assisted surgery is the ability to combine many different medical
images to form a single 3D model to aid the surgeon in planning his/her operation. The surgeon
can also use devices whose position can be tracked by sensors that locate passive markers (we
saw a demo of such a device by Prof. Kunz). For the computer model to be used with the
positional devices a third computer aided technique was developed. Name and describe this
technique and the older process that it has replaced:

b) As Prof. Dingel pointed out, software is becoming increasingly complex with common
operating systems being written with millions of lines of code. One technique that helps
programmers like you deal with this complexity is the process of functional decomposition that we
discussed in lecture. Name the three other techniques, or “weapons” listed by Prof. Dingel – his
three “a” words. Which technique is used to shorten the “arrow of pain” between the
requirements of a program and the expression of that program in machine-level code? Describe
this technique.

Student Number: _____________________ Page 5 of 13

Problem 4) [9 marks]
The following complete program sorts the list declared in the main function. It prints the list out in
main and then at the end of each iteration of the outer loop in the sort, and then once again from
main, after the list has been sorted:

def main():
 testList = [5, 7, 1, 2, 10, 3, 4, 6]
 print(testList)
 mysterySort(testList)
 print(testList)

def swap(numsList, pos1, pos2) :
 temp = numsList[pos1]
 numsList[pos1] = numsList[pos2]
 numsList[pos2] = temp

def mysterySort(numsList):
 i = 0
 size = len(numsList)
 while i < size - 1:
 aPos = i
 j = i + 1
 while j < size :
 if numsList[j] < numsList[aPos] :
 aPos = j
 j = j + 1
 if aPos != i:
 swap(numsList, i, aPos)
 i = i + 1
 print(numsList)
main()

What is the name of the sorting
algorithm being used here?

What is the output of the program?
The results of the first and last print
statements are shown (the ones in
main()); you must add the rest in the
box to the right:

[5, 7, 1, 2, 10, 3, 4, 6]

[1, 2, 3, 4, 5, 6, 7, 10]

Student Number: _____________________ Page 6 of 13

Problem 5) [15 marks]

Write two versions of a modified search function called “modSearch” that uses a sequential
search to locate and return the start and end positions of all matches to a supplied target value in
a supplied list. Your modSearch function header will be:

def modSearch(numsList, target)

You may assume that numsList will be in increasing order, will only contain numbers and will
not be empty. You may also assume that target will contain a numeric value. Here is some
code in a main() function, and its console output, that illustrates how your modSearch should
work:

def main():
 testList = [2, 2, 2, 3, 4, 4, 4, 5, 5]
 print(modSearch(testList, 2))
 print(modSearch(testList, 3))
 print(modSearch(testList, 4))
 print(modSearch(testList, 5))
 try:
 print(modSearch(testList, 10))
 except ValueError as message:
 print(message)

Output:

(0, 2)
(3, 3)
(4, 6)
(7, 8)
Target not found.

As you can see, your function must raise a ValueError exception if the target value cannot be
found in numsList.

Your first version of modSearch cannot use any list methods. The second version, which should
be shorter, must use list methods. Write your code on the next page.

Student Number: _____________________ Page 7 of 13

Problem 5, Cont.)
No list methods version of modSearch:

Version of modSearch using list methods:

Student Number: _____________________ Page 8 of 13

Problem 6) [15 marks]

On the next page, write a function called loadData() that accepts a filename string as its only
parameter. The function then opens the text file and loads the data from the file into a list of
dictionaries, which will be returned by the function. The file consists of frog population data – the
first column will be the name of the pond/marsh, the second column the type of frog and the third
column an integer count. The three values are separated by a comma. Each dictionary in the list
will represent a single row from the file. For example, if the file contains:

Lake Mead, green frog, 120
Swampy Muck, brown frog, 200
Warm Lake, hoppy frog, 1000

the function would return the list:

[{'count': 120, 'pondname': 'Lake Mead', 'frogname': ' green frog'},
{'count': 200, 'pondname': 'Swampy Muck', 'frogname': ' brown frog'},
{'count': 1000, 'pondname': 'Warm Lake', 'frogname': ' hoppy frog'}]

You may assume that the file will always be present, will not be empty and will always have the
correct format, as shown above. However, the file can contain any number of rows. Do not write
any methods other than loadData().

Student Number: _____________________ Page 9 of 13

Problem 6, Cont.)

Student Number: _____________________ Page 10 of 13

Problem 7) [15 marks]

Write a function called makeChange() that makes change for dollar amounts under $5.00, using
only loonies, quarters, dimes and pennies. The function accepts the dollar amount and returns a
dictionary consisting of the coins required to make this amount. Here are the coins to use:

loonie - $1.00
quarter - $0.25
dime - $0.10
penny - $0.01

If the dollar amount is less than or equal to zero or greater than or equal to 5.00 raise a
ValueError exception. Otherwise your function must return a dictionary, where the keys are the
coin names given above and the values are the numbers of each coin required. Don’t include a
coin if it is not required to make the amount (ie. the count for that coin would be zero).

You may need to use floor division: // and perhaps the modulo operator: % for this problem. Do
not write any other functions. Here are a few examples of dollar amounts and the dictionary that
would be returned for each:

1.00
{'loonies': 1}

3.50
{'loonies': 3, 'quarters': 2}

0.97
{'pennies': 2, 'dimes': 2, 'quarters': 3}

2.59
{'pennies': 9, 'loonies': 2, 'quarters': 2}

Hint: floor division and modulo do work as expected for float values, but consider removing the
fractional amount from your input value by multiplying it by 100…

Write your function on the next page.

Student Number: _____________________ Page 11 of 13

Problem 7, Cont.)

Student Number: _____________________ Page 12 of 13

 (blank page)

Some Built-In Functions:
abs(number) # the absolute value of

number
len(obj) # the length of the

iterable or string
str(obj) # convert obj to a string
int(number or string) # convert to an int
float(number or string) # convert to a float
list(obj) # convert to a list
set(obj) # convert to a set where

each element is unique
range([start,] stop [, step]) # creates an

iterable used with
a for loop

input(stringPrompt) # returns a string from
the console

print(obj,…, sep=’ ‘, end=’\n’) # displays output to
the console

chr(unicode) # the character for the
unicode value

ord(character) # the Unicode value for
the character

reversed(obj) # a reversed iterable
sorted(obj) # a sorted version of obj
isinstance(obj, type) # True if obj is of the

supplied type
max(obj) # the highest value in the

supplied iterable
min(obj) # the lowest value
sum(obj) # the sum of the numeric

values in obj
open(filename, mode) # open filename – mode

is ‘r’, ‘w’ or ‘a’
List Methods:
list.append(obj) # appends obj to list
list.count(obj) # counts occurrences of

obj
list.index(obj) # first occurrence of obj
list.index(obj, i, j) # search between i and j
list.insert(index, obj) # insert obj at index
list.pop() # remove and return

element at index = -1
list.remove(obj) # search for, and remove

obj
list.reverse() # reverses in place
list.sort() # sorts in place

File Object Methods:
fileobj.read() # reads entire file
fileobj.readline() # a single line
fileobj.readlines() # a list of lines
fileobj.write(str) # writes str to file
fileobj.close() # close file object

Some String Methods:
the number of occurrences of str
string.count(str, beg=0, end=len(string))
True if the string ends with str
string.endswith(str, beg=0, end=len(string))
replace tabs with spaces
string.expandtabs(tabsize=8)
index location of str, -1 if not found
string.find(str, beg=0, end=len(string))
string.format(args) # args are placed and

formatted into the string
according to format codes

index location of str, ValueError raised if not
found

string.index(str, beg=0, end=len(string))
string.isalnum() # True if letter or numeric

character
string.isalpha() # True if letter
string.isdigit() # True if numeric character
string.islower() # True if lower case
string.isspace() # True if whitespace (space,

tab or linefeed)
string.istitle() # True if titlecase
string.isupper() # True if uppercase
string.join(seq) # concatenate all strings in

sequence
string.ljust(width) # pad with spaces to width
string.lower() # change all to lower case
string.lstrip() # strip whitespace from start
string.partition(str) # returns tuple of size 3 split

around str
replaces all occurrences of str1 with str2
string.replace(str1, str2, num=string.count(str1))
like find but searches from end
string.rfind(str, beg=0, end=len(string))
like index but searches from end
string.rindex(str, beg=0, end=len(string))
string.rpartition(str) # like partition but searches

for str from end of string
string.rstrip() # strips whitespace from end
splits string into a list of pieces using str as

delimiter
string.split(str=“ “, num=string.count(str))
splits string into a list using linefeed as delimiter
string.splitlines(num=string.count(‘\n’))
True if string starts with str
string.startswith(str, beg=0, end=len(string))
string.strip() # strip whitespace from

beginning and end
string.swapcase() # swaps letter case
string.title() # titlecased version of string
string.upper() # changes all to upper case

