
CISC101 Reminders & Notes

• Assignment 2 is due on Sunday at 11:59PM

• There are no CISC 101 lectures, tutorials or labs
during Reading Week

Slides courtesy of Dr. Alan McLeod

• Test 2 will occur the week after Reading Week

Winter 2011 CISC101 - Whittaker 1

Today

• Looping through strings
• The for loop

• Built-in collections or data structures
– Tuples
– Lists

Slides courtesy of Dr. Alan McLeod

– Lists

• The slice operator
• More on programming style

– Some review
– Some new material

Winter 2011 CISC101 - Whittaker 2

Looping Through Strings

• Strings are actually a kind of collection in Python
– A collection of characters - makes sense!

• The len(aStr) BIF returns the length of a string
– Or any other collection

• Use the slice operator [] to access any character

Slides courtesy of Dr. Alan McLeod

• Use the slice operator [] to access any character

aString [index]

– index ranges from 0 (first character on the left) to
len(aString) - 1 (last character on the right)

• Demo: IterateString.py

Winter 2011 CISC101 - Whittaker 3

The for Loop

for variable_name in iterable :

line1

line2

…

Slides courtesy of Dr. Alan McLeod

…

• You make up variable_name

• iterable is a collection, such as a string

Winter 2011 CISC101 - Whittaker 4

The for Loop - Cont.

• A for loop can be replaced with a while loop

• These two loops do exactly the same thing:

i = 0

testString = "Happy Reading Week!"

Slides courtesy of Dr. Alan McLeod

while i < len(testString) :

print(testString[i])

i = i + 1

for aChar in testString :

print(aChar)

Winter 2011 CISC101 - Whittaker 5

The for Loop - Cont.

• But the for loop is easier to use with collections
– Goes through each element in order
– No indicies
– No need to call the len(…) BIF

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 6

Data Structures

• What is a data structure, anyways?

• Python has four built-in data structure types:

In practical terms, it is a variable that is capable
of holding more than a single value

Slides courtesy of Dr. Alan McLeod

• Python has four built-in data structure types:
– Lists
– Tuples
– Sets
– Dictionaries

• Strings are really just a kind of tuple

Winter 2011 CISC101 - Whittaker 7

Focus on these ones.

Lists vs. Tuples

• A list is a set of items enclosed in []

• A tuple is a set of items enclosed in ()

• You can change the items within a list and its
length at any time after you have created it

Slides courtesy of Dr. Alan McLeod

– Lists in Python are mutable

• You cannot change the items in a tuple or
change its length after you have created it
– Tuples in Python are immutable (like “read-only”)

Winter 2011 CISC101 - Whittaker 8

Lists vs. Tuples – Cont.

• Numbers and strings are also immutable
– You can’t mess with the individual digits of a number or

the individual characters of a string after you have
created them

– You can only re-assign variables that are numeric or
string types

Slides courtesy of Dr. Alan McLeod

string types
– Don’t believe me? Let’s try using the slice operator to

try to change a character in a string …

Winter 2011 CISC101 - Whittaker 9

Dictionaries

• Dictionaries or “dicts” are enclosed in { }
• They consist of key : value associations

• For example,

cisc101Dict = {‘instructor’ : ‘SJW’, \

Slides courtesy of Dr. Alan McLeod

cisc101Dict = {‘instructor’ : ‘SJW’, \

‘room’ : ‘BIO1203’, \

‘exclusion’ : ‘CISC110’ }

• We will look at these more closely later …

Winter 2011 CISC101 - Whittaker 10

Sets

• Are new to Python 3
• Items enclosed in { } (like dictionaries)

• Each item must be unique
– If you try to create a set with duplicate items, the

duplicates will be discarded

Slides courtesy of Dr. Alan McLeod

• We will look at these more closely later too …

Winter 2011 CISC101 - Whittaker 11

Lists

• Lists can contain items of all the same type

[3, 2, -1, 10]

• Lists can also contain a mixture of types

Slides courtesy of Dr. Alan McLeod

[4.2, ‘7abc’, 3, aVar]

• Lists can store variables as well as literals!

• All elements are comma-separated

Winter 2011 CISC101 - Whittaker 12

Tuples

• Can store a mixture of types, just like lists

aTuple = (4, 3.2, ‘abc’, 7, -3, ‘ding’)

• Since a tuple is immutable, you cannot change its
values
– You can’t do anything like aTuple [1] = 7

Slides courtesy of Dr. Alan McLeod

– You can’t do anything like aTuple [1] = 7

• Use (element ,) to create a single-element tuple
– Python needs the comma

• Use () to create an empty tuple

Winter 2011 CISC101 - Whittaker 13

Empty Lists

• You can create an empty list like so:

mtList = []

• You can add and alter the values in a list later
– Lists are mutable, unlike tuples

Slides courtesy of Dr. Alan McLeod

– Lists are mutable, unlike tuples

• Useful things:
– The slice operator
– The + operator
– The append(anElement) function

Winter 2011 CISC101 - Whittaker 14

Slice Operator

• You can extract single elements or a set of
elements from a collection using the slice
operator:

[index] or [start_index : end_index]

– All indicies are int numbers

Slides courtesy of Dr. Alan McLeod

– All indicies are int numbers

• Locations are indexed from 0 (first element)
– Maximum index is len(collection) - 1 (last

element)

• The slice operator with the : returns a range of
elements
– No : returns a single element

Winter 2011 CISC101 - Whittaker 15

Slice Operator - Cont.
• When using [start_index : end_index] ,

you can supply one or two numbers

• Omit start_index ?
– The slice starts at the start of the collection

• Omit end_index ?

Slides courtesy of Dr. Alan McLeod

• Omit end_index ?
– The slice ends at the end of the collection.

• Use both start_index and end_index ?
– Slice starts at start_index

– Slice ends at end_index - 1

Winter 2011 CISC101 - Whittaker 16

Slice Operator - Cont.

• If end_index is too large, then the slice defaults
to the end of the list

• The slice operator can be used on either side of
an assignment operator!

Slides courtesy of Dr. Alan McLeod

• You can also number the elements backwards,
where -1 is the last number in the list …

• Let’s try a few out at the prompt!

Winter 2011 CISC101 - Whittaker 17

Slice Operator Examples

>>> test = [2, 1, 3, -1, 4, 6]

>>> test[3]

-1

>>> test[-1]

6

>>> test[4 :]

Slides courtesy of Dr. Alan McLeod

>>> test[4 :]

[4, 6]

>>> test[: 3]

[2, 1, 3]

>>> test[1 : 3]

[1, 3]

Winter 2011 CISC101 - Whittaker 18

Slice Operator Examples – Cont.

>>> test[1 : 3] = [10, 30]

>>> test

[2, 10, 30, -1, 4, 6]

>>> test[-1] = 600

>>> test

[2, 10, 30, - 1, 4, 600]

Slides courtesy of Dr. Alan McLeod

[2, 10, 30, - 1, 4, 600]

Winter 2011 CISC101 - Whittaker 19

Other Operators For Lists and Sets

• What is there in addition to the slice operator?

• + can be used to concatenate lists
– Requires a list on both sides or a tuple on both sides
– You cannot mix types!

• * is used to generate multiples of lists

Slides courtesy of Dr. Alan McLeod

• * is used to generate multiples of lists
– Must have an int after the *

– Works with tuples or lists
• Remember “abc” * 3 = “abcabcabc” ?

Winter 2011 CISC101 - Whittaker 20

Other Operator Examples

>>> test

[2, 10, 30, -1, 4, 600]

>>> testTwo = [5, 10, 15]

>>> test + testTwo

[2, 10, 30, -1, 4, 600, 5, 10, 15]

>>> testTwo * 3

Slides courtesy of Dr. Alan McLeod

>>> testTwo * 3

[5, 10, 15, 5, 10, 15, 5, 10, 15]

Winter 2011 CISC101 - Whittaker 21

Keywords Used with Lists

• del aList[anIndex]

• del aList[startIndex : endIndex]
– Deletes the element(s) from list aList

– The slice operator specifies the element to delete

• element in aCollection

Slides courtesy of Dr. Alan McLeod

• element in aCollection

• element not in aCollection
– Determine if element is in a list or tuple (or not)
– Return True or False

• for variableName in aList

Winter 2011 CISC101 - Whittaker 22

Keyword Examples
>>> test

[2, 10, 30, -1, 4, 600]

>>> del test[3]

>>> test

[2, 10, 30, 4, 600]

>>> del test[1 : 3]

>>> test

Slides courtesy of Dr. Alan McLeod

[2, 4, 600]

>>> 4 in test

True

>>> 100 in test

False

>>> 100 not in test

True

Winter 2011 CISC101 - Whittaker 23

for Loop Example

>>> test

[2, 4, 600]

>>> for aNum in test :

print(aNum, end=', ')

2, 4, 600,

Slides courtesy of Dr. Alan McLeod

2, 4, 600,

Winter 2011 CISC101 - Whittaker 24

Some Built-In Functions for Lists

• len(aCollection)
– Returns the number of elements in the collection

• list(iterable)
tuple(iterable)
– Returns a new list/tuple with the same elements

Slides courtesy of Dr. Alan McLeod

• range(start , stop , step)
– Returns an iterable with integers

• Starts with integer start (optional parameter)
• Stops at stop – 1
• Increases integers by step (optional parameter)

– Often used with a for loop …

Winter 2011 CISC101 - Whittaker 25

The range() BIF

• This function returns an iterable, not a list

• Where did we see iterable before?
– An iterable is a collection, such as a string

• Let’s create one and display its contents

Slides courtesy of Dr. Alan McLeod

• Let’s create one and display its contents

• Can convert to a list or tuple
– Use list(iterable) or tuple(iterable)

Winter 2011 CISC101 - Whittaker 26

The range() BIF - Cont.

• Say, that’s handy!
• For example, these two loops are the same:

i = 0

while i < 20 :

Slides courtesy of Dr. Alan McLeod

print(i)

i = i + 1

for i in range(20) :

print(i)

Winter 2011 CISC101 - Whittaker 27

sorted(…) and reversed(…) BIFs

• sorted(iterable)
– Returns a sorted version of iterable

– Does not change iterable !

• aList. sort()
– Sorts aList ”in situ”, changing it

Slides courtesy of Dr. Alan McLeod

– Sorts aList ”in situ”, changing it

• reversed(iterable)
– Often used with a for loop …

– Reverses the direction of iteration
• Starts at the last element and ends with the the first

Winter 2011 CISC101 - Whittaker 28

enumerate(…) and zip(…) BIFs

• for i , element in enumerate(iterable) :
– Provides an index number and an element for

collections

• for e1, e2, … in zip(iter1, iter2, …) :
– Provides a way to loop through any number of

Slides courtesy of Dr. Alan McLeod

– Provides a way to loop through any number of
collections at the same time

• Demo: ListBIF.py

Winter 2011 CISC101 - Whittaker 29

List Methods

• These methods belong to a list object
• list is the name of a list; obj is a value

list .append(obj) # appends obj to list
list .count(obj) # counts occurrences of obj

list .index(obj) # first occurrence of obj

Slides courtesy of Dr. Alan McLeod

list .index(obj) # first occurrence of obj

list .index(obj , i , j) # search between i and j
list .insert(index , obj) # insert obj at index

list .pop() # removes the last element
list .remove(obj) # search for and remove obj

list .reverse() # reverses in place
list .sort() # sorts in place

Winter 2011 CISC101 - Whittaker 30

List Methods - Cont.

• None of these methods work for tuples
– They only work on lists

• Consult the Python Tutorial, Chapter 5 for more
information on data structures

Slides courtesy of Dr. Alan McLeod

• Demo: ListMethods.py

Winter 2011 CISC101 - Whittaker 31

Methods vs. BIFs

• A method belongs to an object
– Objects are data structures like strings or lists

• More complicated than numbers or Booleans

– Need an instance of an object to call the method on
• e.g., aString .format(…), aList .pop(), etc.

– Invoke methods using an_object . method_name (…)

Slides courtesy of Dr. Alan McLeod

– Invoke methods using an_object . method_name (…)

• A BIF does not belong to any object
– Can just call the function

• e.g., print(…), input(…), etc.

– Invoke functions using function_name (…)

Winter 2011 CISC101 - Whittaker 32

List Method Examples
>>> test = [4, 5, 2, 7, 9]
>>> test
[4, 5, 2, 7, 9]
>>> test.append(12)
>>> test
[4, 5, 2, 7, 9, 12]
>>> test.pop()
12

Slides courtesy of Dr. Alan McLeod

12
>>> test
[4, 5, 2, 7, 9]
>>> test.pop()
9
>>> test
[4, 5, 2, 7]
>>> test.insert(2, 12)
>>> test
[4, 5, 12, 2, 7]
Winter 2011 CISC101 - Whittaker 33

List Method Examples - Cont.
>>> test
[4, 5, 12, 2, 7]
>>> test.append(12)
>>> test
[4, 5, 12, 2, 7, 12]
>>> test.remove(12)
>>> test

Slides courtesy of Dr. Alan McLeod

>>> test
[4, 5, 2, 7, 12]
>>> test.reverse()
>>> test
[12, 7, 2, 5, 4]
>>> test.sort()
>>> test
[2, 4, 5, 7, 12]
Winter 2011 CISC101 - Whittaker 34

Programming Style & Documentation

• Purpose is to make your code readable and
“debuggable” by you or another programmer

“Code is read more often than it is written.”
(Guido van Rossum)

• Internal style elements

Slides courtesy of Dr. Alan McLeod

• Internal style elements
– Documentation (comments)
– Spacing
– Descriptive variable names

• Select your conventions and be consistent

Winter 2011 CISC101 - Whittaker 35

Comments

• Add a comment at the top of your program and at
the beginning of each function describing …
– the overall purpose of the program or function
– the main algorithm used
– author and date created

Slides courtesy of Dr. Alan McLeod

– any assumptions made and/or bugs found

• Function comments should state …
– what parameters are expected by the function
– what the function returns, if anything
– any assumptions made about the arguments

Winter 2011 CISC101 - Whittaker 36

Comments – Cont.

• When the name of a variable is not self-
explanatory, add an inline comment when it is first
initialized

• Add comments at the start of logical blocks
– Indent comment same as start of block

Slides courtesy of Dr. Alan McLeod

– Indent comment same as start of block

• You don’t need to explain code that is obvious
– Focus on code that is tricky to understand

• Maybe it needs to be re-written?

• # TODO comments can be used to mark where
more work is needed

Winter 2011 CISC101 - Whittaker 37

Documentation Strings

• We’ve seen these already
• If you describe your function in a doc string you

don’t need as much in its comment
• What would you not include in a doc string?

– Author(s), date/revision number, code history, problem

Slides courtesy of Dr. Alan McLeod

areas, incomplete section(s), license/copyright, etc.

• Write doc strings for each function in a program
unless they are short and obvious

• Don’t forget that doc strings are available through
the use of the help() BIF at the prompt

Winter 2011 CISC101 - Whittaker 38

Spacing

• Use 4 spaces for indentation
• Don’t mix tabs and spaces

– Not a problem if you are only using IDLE
• When you hit the <tab> key you automatically get 4 spaces

• Long lines:

Slides courtesy of Dr. Alan McLeod

– Keep lines < 80 characters in length
– Use the Python continuation character \

• Indent a continued line so that it lines up nicely

– Break a line after a binary operator, not before

Winter 2011 CISC101 - Whittaker 39

Spacing - Cont.

• Continuation examples:

longAssignment = aLongName + anotherLongName - \

anotherVariable * 2.0

returnedVal = functionCall(param1, anotherParam, \

param2 , param3)

Slides courtesy of Dr. Alan McLeod

param2 , param3)

• Don’t put multiple lines of code on a single line:

if bingo < 3 : bork = try + again

else : we = are + all + winners

Winter 2011 CISC101 - Whittaker 40

Spacing - Cont.

• Use one blank line above a def statement
– No blank lines below

• A blank line inside a function can be used to
delineate a block of code
– Don’t put too many blank lines inside a function

Slides courtesy of Dr. Alan McLeod

– Don’t put too many blank lines inside a function
– Don’t double space your code!

• Put a blank line under a doc string

Winter 2011 CISC101 - Whittaker 41

Spacing - Cont.
• Put a space on both sides of a :

– Google style says no space on the left of a : …

• Put a space after a comma, but not before
• Put spaces on both sides of a binary operator
• Put spaces on both sides of keywords like in ,

not in , is , and , or , not

Slides courtesy of Dr. Alan McLeod

not in , is , and , or , not

• Do not put a space after a unary operator
• Do not use spaces around a = when used in a

function’s parameter list (default and keyword
arguments)

Winter 2011 CISC101 - Whittaker 42

Spacing - Cont.

• No space before or after (and) unless an
operator comes before or after the brackets

• Same rules for [] and { }

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 43

Using Round Brackets

• Use round brackets when they are necessary

• Brackets are totally unnecessary in these cases:
if not(x):

if ((x < 3) and (not y)):

return (foo)

Slides courtesy of Dr. Alan McLeod

for (x, y) in dict.items():

• Brackets are unnecessary (but OK to have) in these cases:
if (x > 2):

while (x < 3):

• Understanding precedence will help!

Winter 2011 CISC101 - Whittaker 44

Round Brackets and Tuples

• On the last slide the (x, y) is a tuple made from
variables x and y

• Any list of variables separated by commas is
automatically a tuple

Slides courtesy of Dr. Alan McLeod

– You don’t need the brackets to make one

• However, if you wish to keep the brackets as a
personal preference then do so

Winter 2011 CISC101 - Whittaker 45

Do
This program is used to demonstrate better style.
Version 1, by Alan McLeod, 27 Oct. 2009

def product(num1, num2) :
'''This is a useless little function that does not do

much'''

print('Hello')
return num1 * num2

Slides courtesy of Dr. Alan McLeod

return num1 * num2

def main() :
'''main invokes product and then waves goodbye!'''

print product(3, 4)
print('Goodbye!')

main()

Winter 2011 CISC101 - Whittaker 46

Don’t!

def m(ll1,l1):print('Hello');return(ll1*l1);

def main():print(m(3,4));print("Goodbye!")

main ()

• This works, but is incomprehensible
• How many things are wrong with this code?

Slides courtesy of Dr. Alan McLeod

• How many things are wrong with this code?

Winter 2011 CISC101 - Whittaker 47

Above All Else,

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 48

