
Winter 2019 CISC124 1/17/2019

F. de la Parra 1

Winter 2019 1

CISC124 – Java Syntax

 Structure
• Basics of class structure
• Attribute declaration
• Method declaration
• Access modifiers
• Arrays (review)

• Strings
 Flow control

• Conditional branching
• Expressions
• Example

F. de la Parra Winter 2019 2

Class Structure

F. de la Parra

• A “class” is a template for creating instances of “objects”

• An object has state (saved in attributes) and behaviour
(can compute something - a.k.a., code execution)

• A named class itself is an object of type Class

• A class contain members: attributes (“instance” or “class”
variables, or “fields”) and methods (“functions”)

• Attributes and methods cannot exist outside a class

• Java code exists in methods

• Only code that exists outside methods is attribute
definitions (and “inner” class definitions)

Summary review:

Winter 2019 3

Class Structure

F. de la Parra

public class MyClassName {

int number1 = 10;

String name = “John”;

public static void main(String[] args) {

// Method ‘s body

}

private int doWork (int inNumber) {

// Method’s body

}

}

CLASS

DECL.

ATTRIBUTES

METHOD

METHOD

Winter 2019 4

Attribute Declaration (Static)

F. de la Parra

• Attributes are declared at the same level as methods (good
practice  declare them at beginning of the class)

• You control their visibility: public, private, protected

• And the way they are stored in memory: static

public attribute is available to any other external class

private attribute is available inside the class

protected attribute is available to classes in the same package

Winter 2019 5

Attribute Declaration

F. de la Parra

• Public, private, static  attribute remains in
memory until the program is completed

• public static  attribute available outside the class
without the need to instantiate the class

• static  “type” is compulsory

[private|public] [static] [final] type
attributteName [= literalValue];

Example: Define a constant attribute:

public static final float pi = 3.1415;

Winter 2019 6

Method Declaration

F. de la Parra

• Private, public, static, final  have the same
meanings as for attributes

• A method must return a value of returnType, unless the
void modifier is specified.

• main  does not return any value and it is the program’s
starting point :

public static void main(String[] args) {…}

[private|public] [static] [void][final]
returnType methodName ([parameterList]) {
method’s body }

Winter 2019 CISC124 1/17/2019

F. de la Parra 2

Winter 2019 7

Method Declaration - Body

F. de la Parra

public int power2(int inNum)

{ // Method’s body

// LOCAL VARIABLES: exist only when

// method is executing.

int temp = inNum * inNum;

// More statements terminated by “;”

return temp; // Return value in temp

}

Winter 2019 8

Method Invocation

F. de la Parra

• Assume that method power2 is a member of class
SimpleMath

• We use the “dot operator” to invoke power2 from an external
class otherClass, after we have created an object mathObj, of
type SimpleMath:

SimpleMath mathObj = new SimpleMath();

intVar = mathObj.power2(5);

• From inside class SimpleMath, we call power2
just by name:

intVar2 = power2(6);

Winter 2019 9

Primitive Types

• Integer types
• byte
• short
• int
• long

• Floating-point
types
• float
• double

• Logical type
• boolean

• Character type
• char

Value stored in
memory location

Winter 2019 10

Primitive Types

• Integer types
• byte  8 bits, 0, [-128, 127])
• short  16 bits, 0, [-32768, 32767])
• int 32 bits, 0, [-2147483648, 2147483647])
• long  64 bits, 0, [-9223372036854775808,

9223372036854775807]

• Floating-point types
• float 32 bits, 0.0, [+- 3.4x +38, +- 1.4x -45])
• Double 64bits, 0.0, [+- 1.7x +308, +- 4.9x -324])

Winter 2019 11

Primitive Types

• Logical type
• boolean  true, false

• Character type
• char ‘\u0000’ to ‘\uffff’ (or 0 – 65535)

• Represents a unicode character:
• 0-9
• a-z, A-Z
• latin symbols
• greek symbols
• symbols form other languages)

Winter 2019 12

Class Types

• Classes are used as types (“templates”) of instantiated objects
• Classes that we declare can be used as types of attributes and

methods
• Classes in the Java libraries can also be used as types
• Example: strings are objects in Java. Instances of class
String

String name = “John”;

String name = new String(“John”);

Winter 2019 CISC124 1/17/2019

F. de la Parra 3

Winter 2019 13

Arrays

• List of “fixed size” containing elements of the “same
type”

• Array size is set at declaration time. Attribute length contains
the number of elements (locations) in the array

• Locations in the array are indexed  0, (length – 1)

int[] skillLevel = {1,2,3,4,5,6,7,8,9,10};

int[] skillLevel = new int[10];

skillLevel[0] = 1;

skillLevel[1] = 2;

etc.

Winter 2019 14

Arrays

• List of “fixed size” containing elements of the “same
type”

• Array size is set at declaration time. Attribute length contains
the number of elements (locations) in the array

• Locations in the array are indexed  0, (length – 1)

int[] skillLevel = {1,2,3,4,5,6,7,8,9,10};

int[] skillLevel = new int[10];

skillLevel[0] = 1;

skillLevel[1] = 2;

etc.

Winter 2019 15

Conditional Branching

if (BooleanExpression)

{Block1 of Statements}

else

{Block2 of statements}

if (BooleanExpression)

{Block1 of Statements}

if (BooleanExpression)

Single Statement;

Winter 2019 16

Conditional Branching

if (BooleanExpression)

{Block1 of Statements}

else

{Block2 of statements}

if (BooleanExpression)

{Block1 of Statements}

if (BooleanExpression)

Single Statement;

Winter 2019 17

Conditional Branching – if-else ladder

if (BooleanExpression1)

{Block 1 of Statements}

else if (BooleanExpression2)

{Block 2 of statements}

else if (BooleanExpression3)

{Block 3 of statements}

…

else

{Block n of statements}

