
Winter 2019 CISC124 1/25/2019

F. de la Parra 1

Winter 2019 1

CISC124 – Today’s Topics

• Arrays of objects
• Encapsulation (data & behaviour)
• Designing methods
• Functional decomposition
• Recursion

F. de la Parra Winter 2019 2

Arrays of objects

F. de la Parra

• Arrays of primitive types -> int[], float[], char[], boolean[]

• Array size is fixed and all stored values are of the same primitive data

• Declare  int[] digits = new int[10]; and

• Initialize  for (int i=0; i < 10; i++) {digits[i] = i;}

• Or declare-initialize  int[] digits = {0,1,2,3,4,5,6,7,8,9};

• Arrays of class types -> any user-defined class or Java API.

• Array size is fixed and all stored values are of the same class type

• Declare -> Student[] cList = new Student[200]; and

• Initialize  cList[0] = new Student(“John”, “Smith”, 1);

cList[1] = new Student(“David”, “Jones”, 2);

etc.

Winter 2019 3

Encapsulation

F. de la Parra

• Code in a class encapsulates

• Data

• Attributes are private and keep track of an object’s
state

• Their values get accessed or changed by using
methods (accessor and mutator methods)

• Behaviour

• Implemented in methods other than accessors
and mutators

• Methods use the state values stores in attributes
and return values to method invocations

Winter 2019 4

Encapsulation

F. de la Parra

Public class myClass {

// 1) Class variable declaration area

// 2) Constructor methods area

// 3) Mutator methods area

// 4) Accessor methods area

// 5) Object-behaviour methods area

}

Winter 2019 5

Designing methods

F. de la Parra

TASK

Role 1 Role n
Collection of Objects

Function

F1 Fm

Function

F1 Fm

Winter 2019 6

Functional decomposition

F. de la Parra

• Task is solved by one (or more) collection of objects
having a specified role in its completion

• Roles 1, … n in the collection of objects should be
similar

• Although their states could be different, the functions
they need to perform to fulfill their roles are identical.

• A function performed by an object can be split up into
multiple functions

• This functional decomposition can continue to many
levels down a hierarchical tree

•1 •2

•3 •4

•5 •6

Winter 2019 CISC124 1/25/2019

F. de la Parra 2

Winter 2019 7

Recursion

F. de la Parra

• Function performs an initial task

• Task can be decomposed into smaller subtasks of the
same nature as the initial task

• Smaller subtasks can be decomposed into even smaller
subtasks of the same nature as the previous subtasks

• This recursive subtask splitting continues until subtask
decomposition is not possible any more

• In terms of a java code, this translates to a method being
able to call itself until a point where no more invocations
of itself are possible

•7

