
Winter 2019 CISC124 2/1/2019

F. de la Parra 1

Winter 2019 1

CISC124 – Today’s Topics

• Exception Handling Scheme
• Exception classes
• Try { } catch{ } finally{ } statement
• Throwing exceptions

F. de la Parra Winter 2019 2

Exception handling scheme

F. de la Parra

• When invoking a method of a class, the method can
generate exceptional runtime situations where it is
possible to issue an “alarm” indicating the nature of the
problem

1. In some situations (i.e., division by zero, exceeded
user-defined boundary) , it is advisable to attempt
some recovery process

2. In others (i.e., null pointer, memory leak), it is
better to let the program “crash” and terminate
with an error.

Winter 2019 3

Exception handling scheme

F. de la Parra

Exception A signal that indicates that some sort of
exceptional condition has occurred

Throw an

Exception

To signal an exceptional condition by
issuing an object of a certain exception
type

Catch an

Exception
To capture an exception object and do
whatever is necessary to recover from it

Winter 2019 4

Exception classes

F. de la Parra

Exception
Object

It is an instance of some subclass of
java.lang.Throwable

Throwable

Error Exception

Java Exception
Types

User Exception
TypesUnrecoverable

(JVM)

Recoverable

(Programs)

Winter 2019 5

Exception classes

F. de la Parra

java.lang.Throwable

Can be thrown by the JVM or the throw statement in a program

• Constructors

• Throwable()

• Throwable(String message)

• Methods

• String getString()

Winter 2019 6

Exception classes

F. de la Parra

java.lang.Exception

Can be thrown by the JVM or the throw statement in a program

• Constructors

• Exception()

• Exception(String message)

• Methods

• String getString()

•1 •2

•3 •4

•5 •6

Winter 2019 CISC124 2/1/2019

F. de la Parra 2

Winter 2019 7

Exception classes

F. de la Parra

SomePackage.ExceptionType

Can be thrown by the JVM or the throw statement in a program

• Constructors

• ExceptionType()

• ExceptionType(String message)

• Methods

• String getString()

Winter 2019 8

Try-catch-finally

F. de la Parra

try {

// block of java code (might generate an exception)

}

[catch (ExceptionType1 e1) {

// block of java code to handle ExceptionType1

}

…

catch (ExceptionTypen eN) {

// block of java code to handle ExceptionTypeN

…

}]

[finally {

// block of statements to do clean-up work (always executed)

}]

Winter 2019 9

Try-catch-finally

F. de la Parra

• try block

• Can have or throw its own own exceptions

• Can have abnormal exits through break, return or
exception propagation

• catch block

• 0 or more blocks

• Argument must of type Throwable or a subclass of
it (i.e., FileNotFoundException, IOException)

• First catch whose argument matches the type of
the thrown object is executed

• Executes as a regular void method

Winter 2019 10

Try-catch-finally

F. de la Parra

• finally block

• Always executes, even if a portion of the try block
executed

• Used for clean up purposes (close files, release
resources, etc.)

Propagation of exceptions moves outwards
all the way to the main method

Winter 2019 11

Declaring exceptions

F. de la Parra

public void openFile() throws IOException {

//Code that might throw an uncaught
java.io.IoException

}

public void myMethod(int var) throws myEx1, myEx2 {

//Code that might throw uncaught myEx1, myEx2

}

throw new myEx1(“Problem 1”);

throw new myEx2(“Problem 2”);

Winter 2019 12

Declaring exceptions

F. de la Parra

public lass MyEx1 extends Exception {

public MyEx1() {super();}

public MyEx1(String s) { super(s);}

}

public class MyEx2 extends Exception {

public MyEx2() {super();}

public MyEx2(String s) { super(s);}

}

•7 •8

•9 •10

•11 •12

