
Winter 2019 CISC124 2/9/2019

F. de la Parra 1

Winter 2019 1

CISC124 – Today’s Topics

• Assignment 2

• Text files

• Text files input/output

• Binary files input/output

F. de la Parra Winter 2019 2

Assignment2 Comments

F. de la Parra

• “Item” references have been changed to “Term” references in
description document

• Typo in query lines has been fixed (file queries.txt). For example, a
query line in file “queries.txt” is now: query: HP:1234567

• Terms having an is_obsolete keyword should be skipped (216
items)

• When reading the “Terms” in, the keyword values that absolutely
need to be parsed an isolated are: id and is_a

• The entire content of a term can be captured in a single String
attribute of an object of type Term

• For “Terms” having two or more is_a keywords (3163 Terms),
select just the first instance to identify a parent “Term”

Winter 2019 3

Text files
• Sequence of lines terminated by EOF (End of File).
• Each line is string of readable characters terminated by CR (Carriage

Return) LF (Line Feed)
• Access is sequential reading or writing a line advances the “line

pointer” by 1. Cannot go back to previous lines

• Can open file for “read” or “write”, and usual processing steps are:
• Open in “read” or “write” mode. Pointer is set to first line of the file
• Process lines, one by one, from the first line until the EOF
• Close the file

F. de la Parra

while (Process not finished) {

Write Lines

Is process finished?

}

while (Not at EOF) {

Read Line(s)

Process Lines

}

WRITE READ

Winter 2019 4

Opening and using files

F. de la Parra

• Constructor methods to open a file throw exceptions.

• Operations to open a file must be in a try-catch block

• FileNotFoundException is the usual one

• Reading a line from a file might throw exception

• NoSuchElementException when using a Scanner
object is a typical one

Winter 2019 5

Classes (write to text file)

F. de la Parra

• Write to a text file

• java.io.FileOutputStream

• java.io.PrintWriter

Classes for file Input/Output are java.io package

• Object of type FileOutputStream implements a data stream to a file

• Constructor may throw a FileNotFoundException

• Can open a file in overwrite or append mode:

• public FileOutputStream (String name,boolean append)

• Object of type PrintWriter supports high level methods to manipulate text data: print,
println, printf, write

Bytes
Strings

Winter 2019 6

Classes (read from text file)

F. de la Parra

• Read from a text file

• java.io.FileInputStream

• java.util.Scanner

• Object of type FileInputStream implements a data stream from a file

• Constructor may throw a FileNotFoundException

• Can open a file pointed to by a FilePath or an object of type File:

• public FileInputStream (String FilePath)

• Object of type Scanner supports high level methods to parse text data (even using
delimiters): next, nextInt, hasNextInt, hasNext, nextLine

Strings
Bytes

•1 •2

•3 •4

•5 •6

Winter 2019 CISC124 2/9/2019

F. de la Parra 2

Winter 2019 7

Binary files

F. de la Parra

• Opening, reading/writing and closing schemes similar to what has been
explained for text files

• Files usually used to save serialized objects and read back into a program
deserialized objects

• The difference with text files is that data streams to read/write to binary
files are byte-oriented

• IOException must be caught not only when opening these files, but also
when reading/writing to them

• Data read in can also cause exceptions (e.g., when reading objects 
ClassNotFoundException)

• Classes involved:

• Write to file  ObjectOutputStream

• Read from file  ObjectInputStream

•7

