
Winter 2019 CISC124 2/13/2019

F. de la Parra 1

Winter 2019 1

CISC124 – Today’s Topics

 OO design summary

• Software core Qualities

• Software’s desired qualities

• Software development approaches

• Software modularity

• Objects

• Classes

• Encapsulation

F. de la Parra Winter 2018 CISC124 – Section 2 2

Software’s core qualities

CORE QUALITIES

 Correct  Accurately meets the specifications of
behaviour and required outputs

 Safe  Maintains the integrity of systems and users

 Efficient  Acceptable response times to requested
actions

 Reliable  Behaves as expected under routine and
exceptional situations

 Maintainable Efficiently supports the insertion of
new features, improvements, corrections

Excellent quality software is required to have a set of:

Winter 2018 CISC124 – Section 2 3

Software’s Desired qualities

DESIRED QUALITIES

 Extensible  Easily supports modifications to handle
scaled up problems within a limited scope (modular
reusability)

 Portable  Capable to operate on different hardware and
software with minimal modifications

 Testable  Easy to modularize and segregate components
for testing and integration

 Verifiable  Easy to trace code back to desired
functionality and confirm validity

 Understandable Self documenting, well structured
components for documentation, good documentation system

Winter 2018 CISC124 – Section 2 4

Software Development Approaches

TWO MAIN APPROACHES MAIN GOAL IS MODULARITY
 Functional Decomposition  Software performs a

main function that can be decomposed into multiple
functions, which in turn can be decomposed into
functions

 Object-Oriented Development  Software is
implemented by a set of cooperating objects that
exchange functionality request messages through
standardized interfaces (method invocations!)

Winter 2018 CISC124 – Section 2 5

Software modularity

MAIN ADVANTAGE OF MODULARITY IS LARGE-SCALE REUSE

 Reuse of pre-built components  It is easier to build a
hierarchy of components (i.e., libraries of classes) and establish
common ways to reuse functionality (types, inheritance, objects)

 Focused testing  It is easier to test units of functionality in
the software (i.e., testing individual classes and methods)

 Focused debugging  It is easier to isolate bugs to blocks of
functionality that interact with each other only through pre-
defined interfaces.

 Tightly controlled modifications  It is easier to keep
under control any side effects caused by changes minimal
regression testing! (Is the system still working after the changes?)

Winter 2018 CISC124 – Section 2 6

Objects

AN OBJECT IS AN OPERATIONAL ENTITY IN AN EXECUTING
COMPUTER PROGRAM
 State  A collection of attributes holding current and

relevant information about the object

 Behaviour  A collection of operations (methods) that
the object supports.

 Identity  One or more attributes that uniquely identify
an object as a distinct entity

•1 •2

•3 •4

•5 •6

Winter 2019 CISC124 2/13/2019

F. de la Parra 2

Winter 2018 CISC124 – Section 2 7

Objects

OBJECTS REPRESENT PROGRAM ABSTRACTIONS OF REAL
(PHYSICAL) AND ABSTRACT ENTITIES
• Problem Domain

• Collections of similar entities (i.e. databases)
• Aggregations of specialized components (i.e. teams)
• Hierarchies of specialization (i.e. Java libraries)
• Physical systems (i.e. embedded systems)

• Software Environment
• Managed software environments (.NET, Java)
• Styled application environments (Web, GUI)
• Specific development environments (Production

lines) Winter 2018 CISC124 – Section 2 8

Classes

A CLASS IS A TEMPLATE FOR A COLLECTION OF OBJECTS
WITH SIMILAR ENCAPSULATION AND BEHAVIOUR
 Encapsulation

 Definitions: identification, basic (inherent) properties of objects
 State: as a set of attributes that can change their values during

program execution
 Reference data structures

 Behaviour
 Constructors: initialize object’s state or configure its operational

environments
 Utility behaviours (static methods implementing algorithms)
 Instance behaviours (instance methods changing data and state)

Winter 2018 CISC124 – Section 2 9

Classes

CLASS SPECIALIZATIONS
 Tangible things  Physical artifacts, animals, etc.

 Agents  Conversion devices, decoders, sorters, etc.

 Events  GUI events, sensory events

 Transactions  Database updates, ticket reservation, etc.

 Users and Roles  Security, Access control

 Systems  Email, video-conference, etc.

 Interfaces  To peripherals (printers, files, displays)

 Foundational  Object, Strings, Math

Winter 2018 CISC124 – Section 2 10

Encapsulation

PROCESS OF DEFINING A CLASS WITH AT LEAST ONE
CUSTOMIZABLE ATTRIBUTE.
 Abstraction

 Hide the details of the data and methods
 Standard interface to attributes
 Accessor and mutator methods
 Specified interface to access methods

 Encapsulation
 Reusability of code
 Integrity and privacy of encapsulated data
 Modularity for design, testing and expansion

•7 •8

•9 •10

