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Modular Division

Recall that one of our goals in defining arithmetic on   was closure – when we apply the 

arithmetic operator to two elements of , the result should also be in .

For addition, multiplication and subtraction, that was easy.  For division, not so much.  But 

we will see what we can do.

When we write x = a/b, we understand that it is equivalent to  x =  a *    .  This lets us replace 

the division operator by a multiplication operator – notice that this is the same trick that we 

pulled when we defined modular subtraction by turning it into modular addition.  The 

problem is that now we are stuck with that  annoying     ... a term that we call the reciprocal 

(or inverse – which is the term I prefer) of b, which we often write as    

Given x , what value y    should be chosen as  ?     Recall that in “normal” 

arithmetic,   for all x except for 0.

So it seems reasonable that in modular arithmetic, we should let  be the element y  

that satisfies x  y = 1

Unfortunately, it turns out that in many of the sets  there are elements other than 0 that 

have no inverse.  (Note that 0 never has a reciprocal)  For example, consider  for 

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

The only elements of  that have reciprocals are 1 and 5.   This is not an accident ... these are 

the only elements of  that are relatively prime with 6.



<Recall:  two integers are relatively prime if their greatest common divisor is 1.  So 2 and 6 are not 

relatively prime because gcd(2,6) = 2.   Note that two numbers can be relatively prime even if neither of

them is a prime number.  For example, 8 and 9 are relatively prime. >

Claim:  In , element  has an inverse if and only if  and  are relatively prime (i.e.

)

Proof:   Suppose  has an inverse, ie there is an element    such that   

  

         for some integer   

 (see footnote)1

  and  are relatively prime

Suppose  and  are relatively prime, ie 

 there exist integers  and  such that     (see the same footnote)

 we can write    where      ( )

 

 

Now apply   to both sides ... 

The term  disappears because it is a multiple of , and , so we 

are left with

i.e.

  

i.e.

 has an inverse

1 There is a theorem that tells us that if  and  are integers, then there exist integers  and  such that
 if and only if .    This result is usually presented during the proof of Euclid’s 

Algorithm for finding the  of two integers.



This innocent seeming result is actually hugely important.  It lets us put the whole  problem

away.  But first, a couple of results that follow immediately from this one:

Claim:  In , if x has an inverse then the inverse is unique.

Proof:  Easy.  Assume x  a = 1     and  x  b = 1.  Show a = b (exercise)

Definition:   If x has an inverse, we say that x is invertible.   We use  to represent the 

inverse of x.

Claim:  Every element of  except 0 has an inverse if and only if  is prime

Proof:   If  is prime, then     x  { }

 If 

    x  {1 ... n-1}

  n is prime

To illustrate that last claim about primes, let’s look at the  table for 

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

I’ve highlighted the 1’s in the table to show that each non-zero element does have an unique 

inverse.   From this table we can see that in , etc



Claim:  if  = b,   then     = a

Proof:  exercise

Now, finally, we can define :

In , let y be an invertible element, and let x be any element.   Then 

If we think of   as   , it is clear that this is exactly parallel to the observation we made 

about “normal” division:   x / y = x * 

Example:  in , what is  5   2?    Answer:  It is undefined, since 2 is not invertible in    

Example:  in , what is 5   2?    Answer:   = 4, so  5  2 = 5  4 = 6

Now this may seem a bit weird ... we are saying that 5 divided by 2 is equal to 6.  What kind 

of sense does that make?   How can dividing a number by 2 give a result that is bigger than 

the original number?

Well, remember that in “normal” math, saying  “x / y =  z”  is the same as saying “y * z = x”

We just have to accept that in modular math, the “division operator” has nothing to do with 

cutting a number up into equal sized parts, and everything to do with being the inverse of the

multiplication operation.  

In , we see that 2  6 = 5, so it is reasonable to say 5  2 = 6

Example:  in , what is 2  5?  Answer:   = 5, so 2  5 = 2  5 = 4

Again, we can confirm that this makes sense because 5  4 = 2

Now what about  in   ?   Well , so   does not exist in   ... so we 

cannot compute   in  



An interesting question:   when , can we always say  is a valid equation for

  even if  does not exist in   ?  It would correspond nicely with “normal” arithmetic, 

in which  is true  .  The truth is I have never seen this done.  I think one of 

the problems with it would be that in modular arithmetic the  operation is explicitly 

defined as   ... so “ “ simply means “  “ ... and if    doesn’t exist 

then we can’t compute 

For completeness, here is the  table for 

0 1 2 3 4 5 6

0 - 0 0 0 0 0 0

1 - 1 4 5 2 3 6

2 - 2 1 3 4 6 5

3 - 3 5 1 6 2 4

4 - 4 2 6 1 5 3

5 - 5 6 4 3 1 2

6 - 6 3 2 5 4 1

In this table “-” means “undefined”.   Notice that each column (except for the 0 column) is a 

complete permutation of   .   This demonstrates that       .... which 

is actually very easy to prove.  This would be a good exercise.

Here is the  table for  

0 1 2 3 4 5

0 - 0 - - - 0

1 - 1 - - - 5

2 - 2 - - - 4

3 - 3 - - - 3

4 - 4 - - - 2

5 - 5 - - - 1



We see that most elements of this table are undefined, which is what we expect given that 1 

and 5 are the only elements of  that are invertible.

This brings us to a really interesting sub-topic of modular arithmetic that I talked about for 

about 30 seconds in class ... but I’ll include it here anyway!

When we look at  and   for , we have seen that the numbers that are not relatively prime

with n behave “badly”.   These numbers do not have inverses; their multiplication table rows 

show duplicates, and their division table columns have undefined entries.

What if we just ignore those numbers?   In other words, what if we reduce all our 

multiplication and division tables by crossing out the rows and columns for the numbers that 

are not relatively prime with n?  

This won’t make much difference when n is prime: we just lose the row and column for 0.  

But consider n = 6.  The only numbers in  that are relatively prime with 6 are 1 and 5, so our

tables become

1 5

1 1 5

5 5 1

1 5

1 1 5

5 5 1

That’s weird – on this reduced set,  and  are exactly the same

Let’s look at a larger example: n = 10.   The numbers in  that are relatively prime with 10 

are  so we throw away the rows and columns for 



The reduced tables look like this:

1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

1 3 7 9

1 1 7 3 9

3 3 1 9 7

7 7 9 1 3

9 9 3 7 1

We can see that within these tables, everything is “well-behaved” - every number has an 

inverse, and – importantly – the operations are closed: we never get any undefined values or 

rogue values that are outside the set we are working on.

Because of these desirable properties, the arithmetic of these reduced sets has been heavily 

studied – I encourage you to explore group theory to learn more.

Ok, that’s all lots of fun.  We’ve shown that we can do arithmetic in a meaningful (though 

sometimes a bit surprising) way on finite sets.  But is it useful?   It turns out that the ideas we 

have explored here are vital to modern cryptography, which means they are vital to e-

commerce.  In a very real sense, companies like Amazon could not exist without modular 

arithmetic.


