
Let’s look at a little example of a problem that becomes trivially easy to solve when we

understand modular arithmetic:

Problem: Find all values such that

First we might ask how many solutions there could be? It’s conceivable that there are none,

one, more than one but a finite number, or infinitely many.

Suppose is a solution. Then it’s not hard to see that is also a solution, since if

then also.

In fact if is a solution then values such as

 are all solutions.

From this it follows that if there is at least one solution, then there are infinitely many.

It’s also easy to show – though I didn’t do this in class – that if there is a solution, then there

must be a solution in

Proof: Suppose is a solution. Consider By definition, . We know

, so . By the argument given above, is also a solution.

So to find all solutions to the problem, we can start by finding the solution in

 is equivalent to in

Note that 4 is invertible in because

Multiplying both sides by we get

But so this reduces to

Now we just need to know what is

In , = 3 (, and)

So , ie.

But remember that if is a solution to , then so is

for all integer values of

So our final answer is:

all integers of the form , where is any integer

In that example finding in was easy enough to do in my head. But what if the

question were “Find all solutions to ” It turns out that 100019 is

prime (I looked it up) so we know that exists in , but how do we find it?

The answer to this question is a bit outside the scope of this course at this point, but if you are

interested you will find a good description of different methods at

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse

and you will also find much good knowledge in the monumental 4-volume work “The Art of

Computer Programming” by living legend Donald Knuth.

Our textbook discusses using Euclid’s algorithm to find inverses. We won’t be doing that.

If is small, there is a simple method for finding .

We know we are looking for a value such that

But this is equivalent to saying ,

which is the same as

In other words, we are looking for a multiple of that is 1 more than a multiple of . Let’s

just list the multiples of and see what we find!

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse

For example, suppose we want to compute in

b Multiples

of 3

Multiples

of 7

0 0 0

1 3 7

2 6 14

3 9 21

4 12 28

5 15 35

Whoa, there it is! , and . So , which means

, which means , which means in

Another example: what is in ?

b Multiples

of 8

Multiples

of 11

0 0 0

1 8 11

2 16 22

3 24 33

4 32 44

5 40 55

6 48 66

7 56

So we see that in

This method gets tedious when is large, but it still works. This method really is the same as

working out the appropriate row of the multiplication table, without applying the to

every calculation.

Let’s return to problems involving numbers that are small enough to work with easily.

Consider this problem : find all solutions to

We can apply the same technique as before: in ,

 in gives us , so

Thus the set of all solutions is for any integer

Easy enough, but consider this one: find all solutions to

 does not exist in so we cannot apply the method we have used successfully so far. In

fact, a bit of experimentation shows there is no solution to the equation in

and therefore no solution in general.

These problems all have the general form “Find all solutions to ”

The first two examples are solvable because and are relatively prime, so exists in .

In the third example, and , which are not relatively prime … and the problem

has no solution.

But does this mean that we can only solve equations of the form when

and are relatively prime?

Alas, that would be too simple. Consider this example:

Find all solutions to .

This looks like it might suffer the same fate as the last example since we know does not

exist in . But in fact, the equation does have solutions in : ,

and are all solutions. We can verify this by looking at the multiplication table for

Thus any integer of the form

 , or

is a solution to the original problem.

A bit of exploration will reveal that we can find solutions to

 only when or or

What is the magical property that makes these problems solvable? It turns out that we need a

very specific relationship between all three numbers that define the problem.

In class I gave this summary:

We can find solutions to (where)

if and only if is a multiple of

This is not very hard to prove and I recommend it as an exercise if you are intrigued by

modular arithmetic. Or … see this proof if you get stumped.

http://sites.cs.queensu.ca/courses/cisc203/Record/20181016%20-%20Proving%20That%20Theorem.pdf

In class we talked about variations on this type of problem. We have now learned how to

determine the existence of solutions to problems such as

Find all solutions to

(there are infinitely many because 5 and 7 are relatively prime so ,

 and 4 is obviously a multiple of 1)

and

Find all solutions to

(there are none because 7 is not a multiple of)

and

Find all solutions to

(there are infinitely many because 6 is a multiple of)

When solutions exist, we know how to find them.

Here’s another type of question:

For what values of can the following equation be solved:

We know this question can be solved if and only if and is a multiple of

. Now , and the multiples of that are elements of

 are

So has solutions if and only if

Exponentiation in Modular Arithmetic

Here’s an interesting question: what is the value of ?

Well you may not find it interesting, but hopefully you will agree that it is challenging. We

could certainly just work out the value of and compute its remainder when divided by 7

… but that isn’t really feasible because is a ridiculously large number and our

computing hardware usually places a limit on the largest integer we can store.

Fortunately we can apply some of our smarts about modular arithmetic and avoid the integer

overflow problem.

Remember this fact about modular arithmetic:

In other words, we can carry the “ ” operation inside the brackets without changing the

result. We will use this principle heavily in CISC-235 when we look at the hash-table data

structure.

So how does that help us with ?

In other words, we could start with , then repeatedly multiply by and apply to the

result until we have multiplied 4 by itself 155 times. In pseudo-code it would look like this:

answer = 4
for c = 1 to 155:

answer = (answer * 4) % 7
print answer

This approach completely avoids large numbers – the largest we will ever deal with is .

But we are doing a lot of work, and there are much better methods.

Consider this:

It is because we started with 156 4’s and we combined them into 78 pairs.

Continuing …

where it is because we started with 78 2’s and we combined them into 26 trios

But and …. so our final answer is

This method arrived at the answer with very little calculation but quite a bit of brain work.

We were “lucky” that divided by , and “lucky” that divided by , and “lucky” that

 . If we tried to turn this into an algorithm we would have to take care of

situations where we are not so lucky – it is doable though.

Tomorrow we will look at two more methods that significantly reduce the number of

computations without requiring an excessive amount of analysis. I’m including the notes on

the first method here.

Solving Exponentials Using Repeated Squaring

Consider the problem of computing ?

The first thing we can do is use our rule that

Since is just the product of 19 with itself over and over, we can write

which is looking better already.

As we have seen, we could use something like this

x = 3
for p = 2 to 54:

x = (x*3) % 8
print x

But we can do better! Here’s how:

We can write as

Why would we do this???? Well, is certainly easier to compute than and once we

have , we can square it to get with one more multiplication.

We can’t reduce quite as easily because 27 is odd … but we can “extract” one 3 and write

 as

We can write as

We can write as

We can write as

Putting these all together, we get

which we can compute by starting at the middle and working outwards. Recall that we are

doing all of this , so we can apply after each operation to keep the values small.

Algorithmically the process looks like this:

x = 3
x = (3 * x^2) %8 this gives us 3^3 %8
x = (x^2) %8 this gives us 3^6 %8
x = (3 * x^2) %8 this gives us 3^13 %8
x = (3 * x^2) %8 this gives us 3^27 %8
x = (x^2) %8 this gives us 3^54 %8

This uses a grand total of 8 multiplications (counting each squaring operation as a

multiplication) and 5 “mod” operations …. which is a huge improvement over the loop that

executed 53 times.

If you are curious about the actual answer to the question (although personally I find the

process much more interesting than the answer – sort of “the journey is more important than

the destination” thinking) we can easily work it out, line by line

So

Notice that there is no mystery about the decomposition process – if the exponent is even we

simply divide it by 2, and if it is odd we “extract” one copy of the value and divide the

remaining exponent by 2

Another quick example: what is ?

First we reduce the by applying to it, changing the problem to . Then we go

to work on the exponent.

485 = 1+ 2*242

242 = 2*121

121 = 1 + 2*60

60 = 2*30

30= 2*15

15 = 1+2*7

7 = 1+2*3

3 = 1+2*1

So our computation looks like this:

x = 8
x = (8 * x^2) %13 8^3
x = (8 * x^2) %13 8^7
x = (8 * x^2) %13 8^15
x = (x^2) %13 8^30
x = (x^2) %13 8^60
x = (8 * x^2) %13 8^121
x = (x^2) %13 8^242
x = (8 * x^2) %13 8^485

In this method we repeatedly square the previous value of x to get the next value of x, and so

this solution method is called repeated squaring, or the repeated squares method

(mathematicians are so creative about naming things!)

But in both examples we saw that we occasionally have to throw in another copy of -

basically whenever we need to get an odd exponent. Wouldn’t it be wonderful if there were

some way to know in advance when we need to do that?

Fear not, citizens … there is a way. To illustrate it, let’s look at the first problem again. Let’s

create a binary string from the lines of computation by writing down “1” if we introduce a 3

on that line, and “0” if we don’t. The result is

Now let’s represent the exponent we are trying to achieve, in binary notation.

in base 2 notation … and it’s the same binary string!!!!!

For the second example, the binary string formed from “1” when we bring in an 8, and 0

when we just square is 111100101 … and the base 2 representation of 485 is 111100101

(The proof of this remarkable correspondence is not difficult. Try it as an exercise.)

The net result is that we can construct an algorithm that computes for any positive

integers and :

start with

repeatedly compute where is the next bit of

(Note that the first line “uses up” the first bit of so the “repeatedly” step begins with the

second bit of .)

The use of above is just a clever trick to make the algorithm concise. When , this

results in multiplying by … and when it results in multiplying by . If we were

actually coding this algorithm, we could just as easily use an if statement to decide whether

to multiply by or not on each iteration.

Example: let’s use this method to compute

156 in binary notation = 10011100

which is our answer.

Exercises:

1. Compute

2. Compute

3. Compute

