
20200110

Determining “Big-O” Classification

In class I glossed over some basic details that relate to constructing a timing function for an

algorithm. In these notes I cover these steps in some detail. They are very straightforward

and should be already familiar.

To determine the timing function for an algorithm we count the fundamental operations as a

function of the size of the input. But when we do this, we usually just count the operations

that involve the actual data. (There are exceptions. For example, in Assignment 1 you are

asked to count function calls.) In other words we ignore things like index variables and

execution control operations. As we will see, we don’t even need to be completely precise in

our counting.

Consider this algorithm, which is written in pseudo-code that I just made up. Notice that I’m

leaving out all declarations.

CODE OPERATIONS

A1: n = read() 2 (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read() 2*n (1 I/O and 1 assignment,
 repeated n times)

We don’t count any of the operations relating to the loop management because they don’t

involve the data.

So we would write the timing function for A1 as

(Note for purists: the size of the input here is actually n+1 since that is the total number of

read actions we execute. For our purposes here, calling it n is fine.)

Now two more simple algorithms:

CODE OPERATIONS

A2: n = read() 2 (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read() 2*n (1 I/O and 1 assignment,
 repeated n times)

for i = 1 to n:

for j = 1 to n:

print A[i] + A[j] 2*n^2 (2 ops, n^2 times)

So we would write the timing function for A2 as

CODE OPERATIONS

A3: n = read() 2 (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read() 2*n (1 I/O and 1 assignment,

 repeated n times)

B[i] = 2*A[i] 2*n (1 I/O and 1 assignment,

 repeated n times)

So we would write the timing function for A3 as

Our goal is to use the timing functions as a way of comparing the efficiency of algorithms.

But as we have already seen, they are somewhat approximate because they don’t count every

single operation. So instead of comparing the explicit timing functions for different

algorithms, we use the timing functions to collect algorithms into groups. Then to compare

two algorithms, we compare the groups they are assigned to.

We group algorithms together based on the growth-rate of their timing functions. To

illustrate this we can look at the the three algorithms above and see what happens when we

repeatedly double the value of n (i.e. double the size of the input).

1 4 6 6

2 6 14 10

4 10 42 18

8 18 146 34

16 34 546 66

Etc.

Now how fast are these timing functions growing? Let’s look at the ratios for successive

values in the columns. For A1, the ratios are etc. We can see that these

ratios are getting closer and closer to to 2 ... can you see why they will never quite reach 2?

For A3, the sequence of ratios is almost identical (it’s just missing the term) so it has the

same behaviour.

For A2, the sequence of ratios is ... it’s a bit harder to see the pattern.

The ratios work out to (approximately) 2.3, 3, 3.5, 3.7 ... and if we went further, we would see

that the ratios approach 4 but never quite reach it.

So when we double the size of the input (ie. the size of the input increases by a factor of 2),

 and also increase by a factor of (slightly less than) 2, but increases by a factor of

(slightly less than) 4.

Experiment: What if we try increasing the size of the input by a factor of 3? That is, start

with n = 1, then n = 3, then n = 9, 27, 81, etc. You can work it out, but I’ll jump to the results:

 and also increase by a factor of (slightly less than) 3, and increases by a factor

of (slightly less than) 9.

In general, we find that if the input increases by a factor of , and also increase by

(slightly less than) a factor of . We can write this as

 and

Similarly, we find that when increases by a factor of , increases by (slightly less than)

a factor of . We can write this as

We got to those conclusions by observation, but we can reach the same conclusion

algebraically. For example, we can write

and we see that is always

Let’s focus on . We have seen that it grows linearly (ie at the same rate) as n grows.

Can we use that information to give any information about the actual value of ?

Suppose there is some particular value for which we can determine that

 for some positive constant . Now consider where

From our previous discussion, we know

and from there it is a simple step to

Now if we replace “ ” by a generic “ ”, we get

Are there such an and constant ? Yes! We can see that if we let and , the

requirements are satisfied.

Now what about ? You can work out that the same property holds (though you cannot

use the same value for)

But what about ?

Suppose we start by establishing that for some value , for some

constant

Now we can consider . From our previous analysis, we know

which gives

Now if we replace “ ” by “ ” we get

.... which does not fit the same pattern as we saw for and . In fact it is kind of

confusing because it still has a in it ... but remember that we used to replace

and if then ... and we can use this to replace the in the right hand

side! This gives

i.e.

Since is a constant and is also a constant, is a constant. Thus

Was there anything particular about the timing functions that we used? Not really.

Suppose an algorithm A has timing function

where the a_i values are constants.

Claim: such that

Proof: Suppose not. Then

As n increases, each term in the sum on the right gets smaller, and in fact gets arbitrarily close

to 0. Thus there is a value of for which each term in the sum is . For this value of n

the sum on the right hand side is ... which is a contradiction. Therefore such an

exists.

ie

Let and be non-negative valued functions on the set of non-negative numbers. If

there are constants and such that then we say

The significance of this is that as n gets large, the growth-rate of f(n) is no greater than the

growth-rate of g(n). In other words, the growth of g(n) is an upper bound on the growth of

f(n).

Putting all of this together, we find that

 and

 and

which looks like a pretty clear distinction between and the other two …

but is it? Can we be sure that is not also in ? Let’s check that out.

Suppose . Then there exist constants n_0 and c such that

ie

But , the left hand side is positive so the inequality does not hold for all (note

that it makes no difference which of and is larger)

Therefore

And now, finally, we are sure that does not belong to the same class of function as

and

