20200114

There are several complexity classes that we encounter frequently. Here is a table listing the
most common ones.

Dominant Term Big-O class Description
C (a constant) O(1) constant time
logarithmic
cxlog n O(log n) 8
time
cxmn O(n) linear time
cxnx*xlogn O(n *log n) n log n time
9 om2 quadratic time
cxn ) or n? time
3 omd cubic time
cxn ) or n’ time
olynomial
¢ % n" Where k is a constant O(nk) p y
time
cx k™ L exponential
. OKK") .
where k is a constant > 1 time
c*n! omn factorial time

Combinations of Functions
it fi(n) € O(gi(n)) and fo(n) € O(ga(n)) .
then f1(n) + fa(n) € O(max(g1(n), g2(n)))

and fi1(n) * fa(n) € O(gi1(n) * g2(n))

So far this should all be very familiar. But O classification is just the small first step in the

field of computational complexity. There are many other ways of grouping functions



together based on the resources (time and/or space) they require. We will consider two more:

Omega classification and Theta classification.

Omega Classification

Big O classification gives us an upper bound on the growth-rate of a function (that is,
f(n) € O(g(n)) tells us that f(n) grows no faster than g(n) grows), but it doesn't tell us
anything about a lower bound on the growth-rate of f(n).

Your first reaction to this observation might well be "why would we care about a lower bound
on the growth-rate? We use this computational complexity stuff to measure the worst-case

running time of an algorithm ... and for worst-case analysis, all we need is an upper bound."

Before we explain why lower-bound analysis is important, we will define exactly what we

mean by it and how it works.

Definition: Let f(n)and g(n)be functions. If there exist constants ¢ and 1o with ¢ >0 such
that
fn) >cx*xg(n) Vn >mng
then f(n) € Q2(g(n)) (€2 is the Greek letter “Omega”)

Note that this is almost exactly the same as the definition of Big O except that the
"< ¢ * g(n)" has become "> ¢ * g(n)'



As with Big O classification, we can see that {2(g (7)) is actually a class of functions, all of
which grow at least as fast as g(7) grows. We can also see that there is a hierarchy of Omega
classes, just as there is a hierarchy of Big O classes. For example, suppose f(n) € Q(ns ).
This means "growth-rate of f(n)" > "growth-rate of n>". But since "growth-rate of n3 =
"growth rate of n?" we can conclude that "growth rate of f(n)'> "growth rate of n?,
which is equivalent to saying that f(n) € Q(n2)

In fact, if f(n) € Q(nF), then f(n) € Q(n') Vi < k.

(Note the parallel to Big O: if f(n) € O(nk), then f(n) € O(n’b) Vi > k)

When determining the Big O classification for f (1) we try to find the smallest function g(n)
such that f(n) € O(g(n)). Conversely, when determining the {2 classification for f(n)we
try to find the largest function g(n ) such that f(n) € 2(g(n) )

In class we did a couple of examples. Here’s another:

Let f(n) = 0.0001 * n? + (10%) * n + 3

We know that f(n) € O (n2) It's also very easy to see that f(n) € Q(n2) ... we can let c =
0.0001 and it is immediately clear that f(n) > C* n? Vn > 0.

Now is it possible that f(n) € Q(n3) ?

If this were the case, then there would exist a positive constant € such that

f(n) >cxn’ Vn > ng

ie.

0.0001 * n® + (10%) xn +3 > cxn’
3> nx* (cxn®—0.0001*n — 10°)



but we can easily see that this is impossible: even if C is very small, as 71 gets large there will
come a point beyond which ¢ * n? — 0.0001 * n — 10%is > 1 so
n x (c* n? — 0.0001 x n — 106) > n, which would give 3 > n Vn > ng... which is

not possible.

Thus f(n) ¢ Q(n?)

This example illustrates a useful fact: if f(72)is a polynomial, then the Big O class and the §)
class for f(n) are identical.

But this is not always the case. For example, consider this function:

A(n):
if n % 2 == 0:
for i = 1..n"r2:
print ¥’
else:
for i = 1..n:

print ¥’

Let T'4 (1) be the time required to execute A(n). If you plot T4 (n)forn=1,2, 3, ... you will
see that it has a zig-zag shape. The tops of the zigs occur when 7 is even, and they grow at
the same rate as n°. It is easy to see that T'4(n) € O (n2) However, the bottoms of the
zags, which occur when 71 is odd, do not show this behaviour - they grow at the same rate as

n.
Referring back to our previous definitions, we are now able to say that T4 (n) € O (n2) and
also T'4(n) € ©(n)... and neither of these can be improved: there is no lower O class for

T4 (n), and no higher Q) class for T4 (n)

This example demonstrates that an algorithm's Big O class may be different from its {2 class.



If it turns out that we can show an algorithm's complexity is in O(g(n))and in (g(n)),
then we get very excited - it means that g(n) gives both an upper and a lower bound on the
growth-rate of the time required by the algorithm. Basically it means we know exactly how
fast the algorithm's time requirement grows. This is so amazingly wonderful that we give it a

special name:

Theta Classification

It f(n) € O(g(n))and f(n) € Q(g(n)), wesay f(n) € O(g(n)).



