
20200123

Binary Trees

Binary Tree:  a rooted tree in which each vertex has at most two children.  The children (if 

any) are labelled as the left child and the right child.  If a vertex has only one child, that child 

can be either the left child or the right child.

Binary trees can also be defined recursively:

A rooted tree T is a binary tree if:

T is an empty tree,  or

T consists of a root vertex with a left subtree and a right subtree, each of which is a binary tree

  

This recursive definition prefigures the pattern of most algorithms we use on this data 

structure, as we will see below.

There are at least two options for implementing binary trees.  For the next while we will focus

on the obvious method: objects with pointers.

A Binary_Tree_Vertex object needs:

    - value (which could be a single value, a collection or list of information, or a key value and 

associated data, etc.)

    - left_child (in a typed language, this is a pointer to a Binary_Tree_Vertex object)

    - right_child (same)

 and may also have pointers to siblings, parent, root, etc.

A Binary_Tree object needs:

    - root (in a typed language, this is a pointer to a Binary_Tree_Vertex object)

and may also have attributes such as "height" and "number_of_vertices"



We will adopt the common “<object>.<attribute>” notation ... so if T is a Binary_Tree object, 

we will refer to T’s root as T.root   and if v is a Binary_Tree_Vertex object, we will refer to 

v.value, v.left_child and v.right_child

Traversals of Binary Trees

One of the things we do frequently with binary trees is traverse them, which means "visit 

each vertex of the tree".  There are four popular methods for traversing binary trees.  We will 

illustrate them on this tree, which has a token stored in each vertex.  

In class we looked at the traversal algorithms in a different order than I am presenting them 

in these notes.  That order seemed to make sense then ... this order seems to make sense now. 

In CISC-235 we live in the moment!



The first tree traversal algorithm we will look at is called In-Order Traversal.  The basic idea 

is to explore the left subtree, then look at the current vertex, then look at the right subtree.  We

can write this recursively:

In_Order(v): # v is a vertex in a binary tree
    if v == nil:
        return
    else:
       In_Order(v.left_child)

  print v.value
       In_Order(v.right_child)

If we apply this to the tree shown above, the result is

4 + 3 * 10 – 2 * 8

Well that’s interesting – this creates an arithmetic expression in standard infix form.  

The next traversal algorithm to look at is Pre-Order Traversal.  The basic idea here is to look 

at the current vertex, then explore its left subtree, then explore its right subtree.  In pseudo-

code, the recursive form of this is:

Pre_Order(v): # v is a vertex in a binary tree
    if v == nil:
        return
    else:

  print v.value
       Pre_Order(v.left_child)
       Pre_Order(v.right_child)

If we apply this to the tree shown above, the result is

- + 4 * 3 10 * 2 8

We didn’t spend much time talking about “prefix notation” for arithmetic expressions but it’s 

not complicated.  In postfix notation each operator follows its operands ... so in prefix 

notation each operator precedes its operands.  The expression shown above is correct prefix 

notation for the expression we are working on.  It would be interpreted (by a talking 

computer) as ... “Oh a minus sign.  I need two numbers.  Now I have a plus sign – I need two 

numbers for that.  There’s a 4 – that’s one number for the addition.  Now I have a 

multiplication sign – I need two numbers for that.  There’s a 3.  There’s a 10.  I have the two 

numbers for the multiplication: 3*10 = 30.  Now I have the second number for the addition: 4 +

30 = 34.  I still need a second number for the subtraction.  I see a multiplication – I need two 



numbers.  There’s a 2.  There’s an 8.  Now I can compute 2*8 = 16.  16 is the second number I 

need for the subtraction so I can compute 34 – 16 = 18.  Now I need a cool refreshing 

beverage.”

We could also process prefix expressions in a right-to-left order – this would be completely 

analogous to processing a postfix expression from left-to-right: we would encounter the 

operands and then the operator.

We talked previously about how postfix notation is deeply related to the way expressions are 

actually evaluated at the assembly language level in a computer (first we load the values into 

registers, then we apply the operation to them).  By contrast, prefix notation is closely related 

to the way we express method calls in high level programming.  For example we might write 

something like

compute_triangle_area(x, power(a,max(b,c)), sqrt(z))

where the three arguments are the lengths of the sides of a triangle.  It is reasonable to call 

this prefix notation because we name each function and then list the values to which it is 

being applied (some of which are the result of other method calls).

Having seen In-Order and Pre-Order it will be no surprise that the third traversal algorithm 

is called Post-Order Traversal.  As you can guess, the idea here is to explore the left subtree, 

then the right subtree, then the current vertex.  As a recursive method it looks like this:

Post_Order(v): # v is a vertex in a binary tree
    if v == nil:
        return
    else:
       Post_Order(v.left_child)
       Post_Order(v.right_child)
       print v.value

If we apply this to the tree shown above, the result is

4 3 10 * + 2 8 * -

which we can see is a correct postfix version of the arithmetic expression we are working 

with.

Now this is pretty impressive!  We were able to store the expression in a simple data structure

that let us extract all three ways of writing the expression (infix, prefix and postfix) using 

simple traversal algorithms.



You might want to think about how to implement these binary tree traversal algorithms 

non-recursively.  Here’s a hint:  one method is to use a stack as well as the tree.


