
Hash Tables and Hash Functions

We have seen that with a balanced binary tree (such as a Red-Black Tree) we can guarantee

 worst-case time for insert, search and delete operations.  Our challenge now is to 

try to improve on that ... if we can.

Suppose we have data objects that consist of pairs - each pair having a key value that is 

unique to the object, and some "satellite" data that may or may not be be unique.  For 

example, the data might consist of "phone number, name" pairs in which each phone number 

must be unique (the key), but there might be two people named "Cholmondeley 

Featherstonehaugh Marjoribanks Wriothesley" (duplicate satellite data) – and I would feel 

sorry for both of them.

Assuming for the moment that the keys are integers, the simplest method to store the data is 

in an array that has an address for each possible key - this is called direct addressing.  Then 

insert, search and delete all take  time – we can't beat that!

The problem of course is that the set of possible keys may be immense - with 10-digit phone 

numbers there are  possible combinations, and most people have at most a couple of 

hundred phone numbers in their contact list.  Even if you have every person in Canada in 

your contact list, creating an array with  elements and only using 35,000,000 of them is 

not very practical.

However, the idea of using a simple array to store our data is very appealing and as we shall 

see, with a little care and attention we can get good average-case complexity for our three 

essential operations, even though we may not have optimal worst-case complexity.

Since we are introducing average-case complexity we should spend a moment looking at 

balanced binary trees in this way.  In a complete binary tree (ie one in which there are no 

missing children - all the leaves are at the bottom level) - almost exactly half the vertices are at

maximum distance from the root.  This implies that the average insert/search/delete time is 

going to be close to   .  We can make the same argument for Red-Black trees.

Since we contemplating using an array that is smaller than the set of all possible keys, we 

clearly need some way to map key values onto array addresses.  For example if our array 

(which we will call T) has index values 0, 1, ..., 9   and our key value is 34, we need to decide 

which array address to use to store the data.  We call this mapping a hash function.  We call 

the array T a hash table.



For the rest of this discussion we will use the following notation consistently:

m :  the size of T.   T has addresses 0, 1, ..., m-1

n  :  the number of data objects we need to be able to store in T.  If this is not known 

precisely, we should at least be able to put an upper limit on it.

h(k) :  a function that takes a key value as its argument and returns a value in the range        

[0 .. m-1]

We will spend some time later talking about how to choose h(k), but for now we will assume 

the keys are non-negative integers and we will use 

        h(k) = k mod m 

as our hash function.  So continuing the previous example, with m = 10 and k = 34, we get 

h(k) = 4

The problem is that since the number of possible keys exceeds m, we may get collisions - two

or more keys in our set that hash to the same address.   To deal with collisions we need to 

define a collision resolution method.

Note that due to collisions, we must store the key value as well as its satellite data - otherwise 

we cannot distinguish between the data associated with different keys that have the same 

value of h(k)



Collision Resolution Methods

The very bad method:  If we are trying to insert a value  and the address  is already 

occupied, we simply reject the new data.  This has the advantage of making 

insert/search/delete all    worst case - but it has the downside that we are frequently 

unable to successfully insert new values even though there may be a lot of empty space in T.

Another bad method:  If we are trying to insert a value k and the address h(k) is already 

occupied, we overwrite h(k) with the new data.  This has     complexity for all 

operations, and we are always able to insert a new value.  Alas, we are likely to lose a lot of 

data.

Challenge:  come up with a situation where you can argue that one of the above methods is

useful.

A good method: Chaining

In a chained hash table, T is not used to store the data directly.  Each element of T is a pointer 

to the head of a linked list of objects that have all hashed to the same location in T.  If no key 

values currently in the set have hash value = i, then T[i] is a null pointer.  Each data pair is 

implemented as an object that contains the key value, the satellite data, and a pointer variable 

that will be used to connect to the next object in the list, if any.

Insert:  It is always possible to insert a new key k into the hash table.  We add the new object 

at the head of the list attached to its hash value address in T.  This gives insertion O(1) 

complexity

        def insert(new_object):
                hash_val = h(new_object.key)
                new_object.next = T[hash_val]
                T[hash_val] = new_object

Search is also simple: we go to the hash value address in T and search through the list:

            def search(k):
                hash_val = h(k)
                temp = T[hash_val]
                while temp != null and temp.key != k:
                        temp = temp.next
                if temp != null:
                        return "found it"
                else:
                        return "not found"



Delete is similar to search - we just need to fix up the pointers in the list

        def delete(k):
                hash_val = h(k):
                temp = T[hash_val]
                if temp == null:
                   return
                elif temp.key == k:
                   T[hash_val] = temp.next
                else:
                   previous = temp
                   current = temp.next
                   while current != null and current.key != k:
                           previous = current
                           current = current.next
                   if current != null:
                           previous.next = current.next

Since the linked lists can be arbitrarily long, there is no upper limit to the number of values 

that can be stored in the hash table.  But the longer the chains, the longer it will take to search 

and/or delete.

We will make the uniform hashing assumption:  we assume that our hash function h(k) 

maps key values uniformly onto addresses - that is, each key is equally likely to be hashed to 

each address.  The validity of this assumption depends on a number of factors, including the 

distribution of the keys, the size of  the table, and the hashing function itself - we will return 

to this issue later but for now we will just make the assumption.  In effect, this means that 

approximately equal number of keys are mapped onto each address in T.

With this assumption, the expected number of data objects in each chain is   (recall that n is 

the number of values stored in the table, and m is the size of the table).  From this it is 

possible to show that the expected number of steps in a search (either successful or 

unsuccessful) is in     - full details of this proof are in the textbook.  Since a delete

operation requires only O(1) operations after the object has been found, the expected time for 

both search and delete is in  .



Writing   instead of just    may seem a little odd, but one way to see why

it is useful is this: if we treat both n and m as variables, then    can be arbitrarily close to 0.  

However every search operation will take at least a constant amount of time because we have 

to compute the hash value of the key.   Including the 1 in the order reflects the fact that the 

complexity cannot be arbitrarily small.

Nonetheless, I’m going to be lazy and write the complexity as  … for most 

combinations of n and m it makes no difference.

Is it reasonable to think of  and  as variables?   When we are creating our data structure 

we can ask this question:  when the expected number of data items to be stored is , how big 

should  be to make our operations efficient?  Or looking at it another way: for given values 

of  and , what is the expected search time?  In these questions both  and  are definitely 

variables.   When building a hash table in a real-world situation,  is most likely going to be 

dictated by the application, and  would be computed from that … but knowing how to 

choose  wisely comes from considering the relationship between n, m and efficiency (which

is what we are doing now).

The ratio    is called the load factor of the hash table, and we often see the symbol  used 

for this.   If  is high then collisions are more likely.

The downside of chaining is that indirect addressing (the pointers we use to link together the 

chains) is physically slower than direct addressing.  The most popular alternative is to resolve

a collision by finding an empty address in the table and storing the new data object there.

 This is called open addressing.



Open Addressing

We will look at three forms of open addressing:  linear probing, quadratic probing, and 

double hashing.

For open addressing, we change the notation for our hash function to include a second 

parameter.

            h(k,i)   === the address to try to store key k, when i locations have previously been 

tried for this key

We break h(k,i) into two independent functions, like this:

  

where 

         is a hash function as we used the term before - any function that produces a value 

in the range [0...m-1]

         is any function that produces integer values and satisfies the requirement that 

Note that  includes a final " " to ensure that the value of  is in the range 

[0...m-1] even if  returns a large value.

Open addressing looks like this:  Given a key value k, we first compute .  If there is a 

collision at that address, we compute .  If there is a collision there, we try  … 

and so on.

The search algorithm for a hash table using open addressing examines exactly the same 

sequence of addresses as the insert algorithm.  The search is successful if the key is found, 

and unsuccessful if either an empty location is found, or all locations are examined without 

finding the desired key.

The sequence of addresses examined during any of the three essential operations is called the 

probe (or probing) sequence for that key.  It should be clear that the probe sequence is 

completely determined by the key value.  Ideally, each probe sequence should contain each 

address in the hash table exactly once.  These probe sequences would be permutations of the 

set {0,…,m-1} … so there are m! possible probe sequences.  We will use this fact to compare 

the three forms of open addressing.



Linear Probing

The idea of linear probing is to resolve collisions by looking at the addresses sequentially 

following the first address tried.  To achieve this we simply let 

    

When computing  etc, the  part never changes, so in 

implementation we compute this once and then just use it over and over.

Note that we need some way to establish that an address is empty - this is typically done by 

storing an illegal key value in each address where no key has yet been stored.  For example if 

the legal keys are all positive integers, we can use 0 to signify "empty".  Since this depends on 

the actual set of possible keys, I will just use “empty” in the pseudo-code versions of the 

algorithms.

I think these algorithms are marginally different than the way I wrote them on the board in 

class.  Functionally they are the same.

Linear_Probing_Insert(k):
        i = 0
        v = h'(k)
        while (i < m):

a = (v+i) % m
 if (T[a] is "empty"):

T[a] = k
break

else:
         i ++
        
        if i == m :        

report "table full, insert failed"

Here’s something we DIDN’T talk about in class, because it slipped my mind.  Remember 

that the keys are supposed to be unique.  Well, are we really going to trust some dumb user to

never try to add two data objects with the same key (or even just add the same data object 

twice)?   (Rule 1: never underestimate the user’s ability to mess up your program.)



So our insert method should look like this:

Linear_Probing_Insert(k):
        i = 0
        v = h'(k)
        while (i < m):

a = (v+i) % m
if (T[a] == k):

report “Attempt to insert duplicate key”
break

 elif (T[a] is "empty"):
T[a] = k
break

else:
         i ++
        
        if (i == m) :        

report "Table full, insert failed"

Now for searching – pretty similar to inserting.:

Linear_Probing_Search(k):
        i = 0
        v = h'(k)
        
        while (i < m):

a = (v + i) % m
 if (T[a] is “empty”):

report “Search value not found”
break

elif (T[a] == k):
report “Found it”

else:
i ++

   if (i == m):
report “Search value not found” 

Easy peasy, but what about deletion?  The problem is that if we delete a key value by 

replacing it by our "empty" flag value, then a subsequent search might give an incorrect result

due to hitting this empty spot and stopping, when it should have continued and found the 

key value.



Example:  Suppose the keys are integers in the range [1 … 20],  m = 10, and we decide to use

   

(Side note:  We will show in class that   is not a good hash function.  Can you see why 

already?)

If our first key for insertion is   = 13, the probe sequence is 4, 5, …, 9, 0, 1, 2, 3 and we place 

the data in T[4]

If our second key for insertion is   = 10, the probe sequence is again 4, 5, … 1, 2, 3 and we 

place the data in T[5].

Now suppose we delete  and place the “empty” flag in T[4].  

Now, finally, suppose we search for  .  We look in T[4], we see “empty”, and we stop … 

even though  is in the table.

We solve this by choosing another flag value to signify "deleted".  Again, if the valid keys are 

all positive integers, we could use -1 as the "deleted" flag.  This changes our insert algorithm a

bit: insert can insert into any address that is either "empty" or "deleted".

Linear_Probing_Insert(k):
        i = 0
        v = h'(k)
        while (i < m):

a = (v+i) % m
if (T[a] == k):

report “Attempt to insert duplicate key”
break

 elif (T[a] is “empty”) or (T[a] is “deleted”):
T[a] = k
break

else:
         i ++
        
        if (i == m) :        

report "Table full, insert failed"

The search algorithm does not change.  Now we can write the delete algorithm:



Linear_Probing_Delete(k):
        i = 0
        v = h'(k)
        while (i < m):

a = (v+i) % m
if (T[a] == k):

T[a] = “deleted”
break

 elif (T[a] is “empty”):
report “delete failed – value not found”
break

else:
         i ++
        
        if (i == m) :        

report "delete failed – value not found"

Linear probing is quick and easy and it is guaranteed to find an empty address if there is one.

 Unfortunately it is subject to a phenomenon called primary clustering which can negatively 

affect the expected times for insertion, search and deletion.  The problem is that if (for 

example) 4 consecutive addresses are filled and the next address is empty, the probability that

the next address will be filled on the next insert is higher than it should be: any key that 

hashes to any of the 4 filled addresses will end up in the next one.  Thus blocks of consecutive

filled addresses tend to get larger and larger, and the number of probes needed to complete 

any of the three essential operations gets larger too.  In the worst case we can end up with

 time for each of the essential operations.



Quadratic Probing

Quadratic probing is similar to linear probing except that instead of , we use

 ,  where  and  are constants (usually but not always positive 

integers).

Fortunately we don’t need to come up with new algorithms.  The algorithms we developed 

for linear probing (using "empty" and "deleted" flag values) need only to have the new  

function replace the one we used for linear probing.

Quadratic_Probing_Insert(k):
   i = 0

        v = h'(k)
        while (i < m):

a = (v + c1*i + c2*i^2) % m
# note: c1 and c2 would be defined externally and
# shared by all three methods: insert, search, delete
if (T[a] == k):

report “Attempt to insert duplicate key”
break

 elif (T[a] is “empty”) or (T[a] is “deleted”):
T[a] = k
break

else:
         i ++
        
        if (i == m) :        

report "Table full, insert failed"
# but this may be a lie – the table may not be full

Quadratic_Probing_Search(k):
        i = 0
        v = h'(k)
        
        while (i < m):

a = (v + c1*i + c2*i^2) % m
 if (T[a] is “empty”):

report “Search value not found”
break

elif (T[a] == k):
report “Found it”

else:
i ++

   if (i == m):
report “Search value not found” 



Quadratic_Probing_Delete(k):
        i = 0
        v = h'(k)
        while (i < m):

a = (v + c1*i + c2*i^2) % m
if (T[a] == k):

T[a] = “deleted”
break

 elif (T[a] is “empty”):
report “delete failed – value not found”
break

else:
         i ++
        
        if (i == m) :        

report "delete failed – value not found"

Quadratic probing greatly reduces the effect of primary clustering.  To illustrate this, consider

a simple example:  let , and let m = 11.  Let  and  be two keys.  Suppose

.  Then 's probe sequence is 

0 0

1 2

2 6

3 1

4 9

... ...

(Check to make sure you understand how the values in this probe sequence are computed!)

Now suppose .  Then 's probe sequence is 

0 2

1 4

2 8

3 3

4 0

... ...



Even though the probe sequences both contain 2, they go off in different directions after that.  

Note that they also both contain the value 0 – in  ’s probe sequence it is followed by 2.  

What is it followed by in  ’s probe sequence?  

When we use quadratic probing, two probe sequences may hit the same address at any point, 

but then hit different addresses after that.  This greatly reduces the problem of primary 

clustering – compare this to linear probing, in which two probe sequences are locked together

as soon as they share a common value.



Note that with quadratic probing there is still a problem with what is called secondary 

clustering:  if , the probe sequences for  and  will be identical.  Thus 

there are only m different probe sequences, out of a possible m! sequences in which we could 

conceivably search the table.  Fortunately, secondary clustering is much less of a problem 

than primary clustering.

However, quadratic probing has a potentially much bigger problem: unless ,   and  are 

carefully chosen, a probe sequence may only include a subset of the possible addresses.  For 

example, let  ,  and .   Suppose .   The probe sequence for

 is 0, 2, 6, 0, 8, 6, 6, 8, 0, 6 etc.  ... we seem to be trapped in repeated visits to a very small set 

of addresses.  In fact it is easy to see that this probe sequence will never contain any odd 

addresses:  we have 

     

     

and since  is always even,   will also always be even – so 

this probe sequence will never contain any odd addresses.  (Aren’t you glad you did all that 

modular arithmetic in CISC-203?)  It is a bit more challenging to determine whether or not 4 

and/or 10 ever occurs in the probe sequence we have started to write out in this example – I 

leave that to you as an exercise for a rainy day with nothing good on Disney+.

Why is this important?  Suppose we are attempting to insert  into the hash table, and all the

even addresses are full but all the odd addresses are empty.  Our insert attempt will fail 

because ’s probe sequence never looks at the odd addresses – so we can’t insert the new 

data even though the table is half empty.  This is not good!

You may have noticed a difference between the two examples we have done.  In the first one 

we used m = 11 and things worked out ok.  In the second example we used m = 12 and things 

went sideways on us.  The difference of course is that 11 is a prime number and 12 is not.  As 

a simple illustration of why this is relevant, when we are computing the expression

  … which we can write as   … there are lots of ways this 

can turn out to be a multiple of 12 (for example, the first term can be a multiple of 3 and the 

second term can be a multiple of 4 (or vice versa), or the first term can be a multiple of 2 and 

the second term can be a multiple of 6 (or vice versa), or either term can be a multiple of 12).  

And if this expression is a multiple of 12, then  becomes just     for this

value of i.   This means that  will show up quite frequently in the probe 

sequence for .  At the very least we are frequently revisiting an address that we have already 



looked at (which is a waste of time), and at worst there is a big risk that the probe sequence 

will contain even more restrictive patterns such as the one we saw above.

By contrast, there are relatively few ways that   (that is,    ) 

can turn out to be a multiple of 11: it only happens when one or both of the terms are 

themselves multiples of 11.  Thus with a table size of 11 we are less likely to see probe 

sequences that return to their starting points over and over such as we saw for a table of size 

12.

This is just a tiny step towards a proper discussion of the best way to choose the size of your 

hash table, but it suggests a solid fundamental idea:  probe sequences will be less likely to 

fall into patterns if we let m be a prime number.

A full discussion of the best way to choose ,  and  for quadratic probing is beyond the 

scope of CISC-235 … but I encourage you to do some independent reading on this topic.  The 

number theory you studied in CISC-203 will help you.


