
Priority Queues and Heaps

A queue is an abstract data type that supports addition and removal of items, with the 

following restrictions:

        - new elements can only be added to the end of the queue

        - only the item at the beginning of the queue can be accessed and/or removed

A queue can be implemented with an array:

        - addition and removal take O(1) time

        - size is limited

        - need to keep track of where the beginning and end of the queue are in the array

        - the queue may eventually "wrap around" the end of the array - not a problem but just a 

special case that we need to deal with

An alternative implementation is with a linked list:

        - size is not limited

        - addition and removal take O(1) time

        - no special cases to worry about

        - linked lists take more memory space than arrays, and are a bit slower

A priority queue is a queue in which each item has a priority attached.  We will assume that 1

is the lowest priority.  Priority queues have the following operations:

        - add new elements

        - find (and/or remove) the item with the highest priority

        - in practice, we want items with equal priority be sequenced in such a way that items 

added earlier reach the head of the queue before items added later (for example, if item A and

item B both have the same priority and A is added to the priority queue before B is added, 

then item A should come to the head of the priority queue before B does)

Note that searching the set is not a required operation.  Some implementations of priority 

queues do support search operations – we will discuss this later.

Priority queues have many applications including hospital emergency wards, airport plane 

landing sequencing, and operating system task scheduling.



In every application, the priority of an item is just one of its attributes and a full 

implementation will have to store all of the data for each item.  However in our discussion we

will focus only on the priority values of the items.  We will assume that the rest of the data 

“goes along for the ride”.  In our diagrams we will only show the priority values of the items 

unless we need to distinguish between items that happen to have the same priority.

Implementation of a Priority Queue:

We can certainly implement a priority queue with an array or linked list:

• a new item with priority p is inserted  after all items with priority  p, and before all 

items with priority < p

• adding an item is in O(n) where n is the number of items in the queue

• accessing (and/or removing) the item with maximum priority is in O(1)

Example of the problem when using an array:

7 4 4 3 3 3 3 2 1 1 1

To insert a new item with priority 7, almost all the values need to be moved one space to the 

right to create an empty space for the new item – this is O(n)

Example of the problem when using a linked list:

To insert a new item with priority 2, we need to walk through most of the list to find the 

insertion point – this is O(n)



Note that if the set of possible priorities is limited to the set {1,2, ... k} for some fixed integer k, 

then we can implement the priority queue with a set of  separate queues, one for each priority

class.  Adding a new item takes O(1) time, and accessing (and/or removing) the item with 

maximum priority takes O(k) time, and since k is a fixed integer, this is O(1).

That’s a nice result (O(1) complexity is always good) but not very interesting ... so we focus on

the situation where the set of possible priorities is unlimited.

If the set of possible priorities is not limited, we need to be smart to improve on the O(n) time 

to add new items.  We will use a structure called a max-heap.



Max-Heaps

A max-heap is a binary tree such that

• the value stored at each vertex is  the values stored at its children.  Note that this 

results in the largest value being at the root of the tree

• all levels are full, except possibly the last one

• if the bottom level is not full, all of its vacancies are at the right side

So we have one organizational rule, and two structural rules.  Because of the structural rules, 

the “shape” of a max-heap containing a set of k values is completely fixed.  For example if the 

set contains 6 values, a max-heap containing these values must look like this.



However, it is important to see that the organizational rule can be satisfied by different 

arrangements of the values.  For example if the set of values is {1,3,3,7,9,10}, the heap could be

arranged as

or as

or as any of several other arrangements.  Note that there is no “left child    right child” rule.  



However there are two consistent features of all legal max-heap arrangements:

- the largest value is at the root of the tree

- the second largest value (which may be a duplicate of the largest value) is in one of the 

root’s children.

Accessing the maximum value is O(1), since it is at the root of the tree.  But what is the 

complexity of removing that value?

Removing the largest value from a max-heap

The problem of course is that we can’t simply delete the first vertex (as we could if the 

priority queue were stored in a linked list) – we need to choose a new root.  One idea that 

occurs to many people is to “promote” the larger of the root’s children by moving that value 

up into the root vertex ... then filling the newly empty vertex by promoting the larger of its 

children, and so on down the tree until we end up with a leaf with nothing in it.  Then delete 

that leaf.

The problem with this is that it spoils the structural rules of the max-heap: unless the empty 

leaf we delete happens to be the right-most one on the bottom level, we will end up with a 

gap in some level.  Well, so what?  Rules are made to be broken, right?  But the danger here is 

that by allowing this and performing subsequent deletions in the same way, our tree may end

up looking very sparse ... in fact it may end up looking like a linked list.  And in that 

(extreme) case, subsequent “remove largest” operations will be in O(n) because we would go 

all the way down the tree, promoting the value at each level.  This is bad because our goal is 

to avoid O(n) operations.

When we remove the largest value in the set, the structure of the resulting heap is 

predetermined: it must look exactly like the original heap, but without the right-most leaf on 

the bottom level.

Here is an approach that people often propose:  Since we know that the process just described

will end up deleting a leaf, and we also know that the heap needs to “lose” its bottom-right 

leaf to be properly structured, why not fill the gap where the leaf has been deleted (because 

its value has been promoted) with the value in the leaf that “needs” to be deleted?



Unfortunately, this may not result in a valid heap.   Consider this example:

If we remove the 10 and attempt to replace it with its larger child (9), and then replace that 

with its larger child (3) we end up with this



and if we now move the leaf that needs be gone (the one containing 5) over to where we just 

lost a leaf (due to promoting 3) we end up with 5 having 3 as its parent ... which violates the 

heap rule.   We would then have to promote the 5 upwards to a valid location.

But ... it was a clever idea!



So here’s a better approach:  Consider the first max-heap example shown above.  We know 

that after we remove the largest value, the set will have exactly 5 elements, and therefore we 

can see exactly what the max-heap will look like after the deletion:

So when we take out the largest value (10) we have an empty vertex at the root.  But we also 

have to get rid of the last vertex on the bottom level, which contains 3.   Hmm, a vertex that 

needs a new value, and a value that needs a new vertex ... what shall we do?

The answer is that we put the 3 in the empty vertex at the root, giving this

But now the organizational rule is violated.  We need to fix that without changing the 

structure of the max-heap.  Fortunately this is really easy: we compare the value we just 

moved up and the values of its children.  If it is smaller than either of them, we “swap” it with



the larger of its children (in this example, we swap the 3 in the root with the 9).  Now we 

compare the moving 3 with the values of its new children, and if necessary we swap it with 

the larger of its children ... and we continue pushing it down the tree until it reaches a valid 

location.  (In this example the 3 does not need to move down any more because it is   1 and

 3 .)   It is important to understand that this process is guaranteed to produce a properly 

arranged max-heap: whenever we swap a value “up”, it lands in a valid location because it is

 all the values below it.

So what is the complexity of this process?  Moving the value from the bottom to the top takes 

constant time, then each time we swap it with one of its children, that is also a constant time 

operation ... and because we have kept the tree as compact as possible, we know there are

 levels in the tree!  So this entire process is in    Win!

Note: we can improve the practical efficiency of this by not actually re-inserting the value 

from the bottom into any vertex until we actually find its new home.  This means that all the 

points where we used the term “swap” are really just “promote” operations – it saves a bit of 

time.



Here is pseudo-code for the entire “remove largest” operation:

def remove_max():

   max_value = root.value

   mover = value from the right-most filled position in the bottom 
level of the tree

   delete the vertex that contained mover

   temp_pos = root

   while mover < either of the children of temp_pos:

       new_pos = temp_pos.left or temp_pos.right, whichever has the 
larger value

       temp_pos.value = new_pos.value

       temp_pos = new_pos

   temp_pos.value = mover

   return max_value

For implementation, we have to handle a special case: temp_pos may have only a left child 

(note that there is no way a vertex can have a right child but no left child) so the logic is 

something like this:

if temp_pos.left != None:

max_child = temp_pos.left

if temp_pos.right != None and 

temp_pos.right.value > temp_pos.left.value:

max_child = temp_pos.right

# now max_child points to the child with the largest value

if mover < max_child.value:

...

There is also a significant step in the algorithm left unspecified ... how do we find the right-

most occupied vertex on the bottom level of the tree?  We will come back to that.  



Inserting a Value Into a Max-Heap

Now consider the problem of adding a new item x to the set (remember: x is the priority of 

the new item – in a real application, the priority would be just one attribute of the item but for

the time being we are only focusing on the priorities).  

The first thing to think about is what the heap will look like in terms of its structure.  The 

heap after adding a new value will have one more vertex, added in the first vacant position in

the bottom level of the tree.  We start by creating this new vertex (call it p).  Then we find out 

if the value stored in p’s parent is  <  x  (remember, x is the value we are adding to the set).  If 

it is, we move the value from the parent down to p, and test again to see if x can be stored in 

p’s parent.  In this way we move up the tree until we finally find a safe location to store x.

locate the first vacancy in the bottom level of the tree

create a new vertex and attach it at this point

call this vertex p

while p != root  and   p.parent.value < x :

p.value = p.parent.value # move the parent’s value down

p = p.parent

p.value = x

Each iteration of the loop takes O(1) time, and the loop executes at most once for each level of 

the tree.  Since the tree is as dense as possible its height is O(log n), so adding an element to 

the heap takes O(log n) time ... provided we can find the first vacancy easily.  This is basically

the same stumbling point as we ran into for removing the largest element: we need to quickly 

locate a specific vertex at the bottom of the tree.

We can imagine that the vertices are numbered, (starting at 1 of course), going left to right 

across each level.



In this diagram it is quite clear that the bottom-right occupied location is vertex 5, and the 

location where the next new vertex must go will be as the left child of vertex 3, and it will be 

numbered 6.  The problem, as stated several times already, is to find these positions in the 

tree quickly.

Now, what data structure do we know that associates an integer with each data location, and 

gives us constant time access to each of those data locations?   The answer of course is a 1-

dimensional array.

So we can model the vertices of the max-heap by using the numbering defined above and 

storing each vertex in the corresponding element of a 1-dimensional array.  But what about 

the edges of the heap – for a given vertex of the heap stored in element k of this 1-

dimensional array, how can we …

- locate the parent of this vertex (ie find the array index that contains the parent)

- locate the children of this vertex

Looking at the figure again gives us the answers.

The parent of vertex k has number    (i.e.  rounded down) which in many languages is 

just calculated as k/2 using integer division.

The children of vertex k have numbers 2*k (the left child) and 2*k + 1 (the right child).

Thus we don’t need pointers to implement the edges of the max-heap – we can figure out 

where they go using trivial arithmetic.



Suppose we are using an array of size 10 to store the heap shown above.  The values would be

placed as follows:

12 9 7 1 3

0 1 2 3 4 5 6 7 8 9

You should check the calculations stated above to confirm that I have placed the values from 

the max-heap in the proper elements of the array.

This leaves the first element of the array (annoyingly indexed with 0) unused.  But we have a 

very good use for it: we store the number of elements currently in the heap in this location.   

We might as well call this array A.  For the example we are working with, A would look like 

this.

5 12 9 7 1 3

0 1 2 3 4 5 6 7 8 9

Now see how clever this is!  The last occupied location of the heap is given by the value of 

A[0], and the first vacancy in the heap is give by the value of A[0] + 1.

This means that the mysterious “we’ll talk about that later” steps in both in remove-largest 

and insert algorithms can be solved in O(1) time … which in turn means that both of those 

algorithms run in O(log n) time … which is a major improvement over storing the max-heap 

in a linked list or a sorted array (both of which give O(n) for these algorithms).

We can rewrite our remove-largest() and insert(x) methods to utilize this very simple and 

extremely efficient implementation of the max-heap.



Let A be the array in which we are storing our max-heap (which is the ADT we are using to 

implement the priority queue ADT).  To initialize A with an empty max-heap, we simply set 

A[0] = 0.  Then the function to remove the largest value looks like this:

def remove_max(A):

if A[0] == 0:

ERROR(“Cannot remove from empty max-heap”)

else:

max_value = A[1]

mover = A[A[0]]    # the value from the last leaf on the bottom level

A[0] -= 1  # size of the heap goes down by 1

temp_pos = 1

left_child = temp_pos * 2

right_child = left_child+1

# now push the value down until it reaches a proper location

while left_child <= A[0]:

max_child = left_child

if right_child <= A[0] && A[right_child] > A[left_child]:

max_child = right_child

if mover >= A[max_child]:

break # we have found the proper location

else:

# promote the larger child up, and move down one

# level of the tree

A[temp_pos] = A[max_child]

temp_pos = max_child

left_child = temp_pos*2

A[temp_pos] = mover # store the moving value in its proper location

return max_val # return the value that was at the top of the

# heap



Some things to observe about this algorithm:

- We delete the now-empty vertex at the bottom of the tree by decrementing A[0]

- We check to see if the current vertex (temp_pos) has any children by computing the 

index location where its left child would be.  We compare this to A[0] to see if it is an 

active vertex in the tree.

- If the current vertex has no children, we exit the loop.  So when we enter the loop, we 

know there is a left child.

- We check to see if the current vertex has a right child in a similar manner to 

determining if it has a left child.  If it has only one child, we set max_child = left_child.  

If it has two children we compare their values to determine which is larger.

- If the moving value is    the larger child of the current vertex, we exit the loop.  If 

not, we move the larger child up and set temp_pos to be the now-empty location of the

larger child

- Once we are out of the loop, the current vertex is the proper location for the moving 

value

- Note that we never explicitly delete any values – we just over-write them when we 

need to



We should also look at the insert algorithm, adapted to storing the heap in an array:

insert(x):

if A[0] == len(A) – 1:

ERROR(“Max-heap is full; cannot insert”)

else:

A[0] += 1

temp_pos = A[0]

while temp_pos > 1:

parent = temp_pos / 2

if A[parent] >= x:

break

else:

A[temp_pos] = A[parent]

temp_pos = parent

A[temp_pos] = x

You should make up some data and work through a few insertions and deletions on a max-

heap to make sure you understand these operations.

These two algorithms give us an extremely efficient implementation of the max-heap ADT … 

but at the cost of having a fixed maximum size on the heap.

If there is no known upper bound on the size of the set we are storing in the heap, we have 

two possible solutions.  The first is to copy the entire heap to a new, larger array whenever 

this becomes necessary.  This is an O(n) operation but if we make the new array considerably 

larger than the old one (for example, we can double the size) then we will only have to 

increase the array size once in a while – the long-term cost of doing this is quite small.

For example, suppose we double the array size whenever we need it to grow, and suppose we

start with an array that can store a heap of size 32.  When we try to add another value, we 

have to copy the existing 32 values.  Then the heap can grow to 64 before we need to double 

the array again.  This time we have to copy 64 values … and so on.   If we look at the total 

number of copy operations divided by the total number of values in the heap, we see it is this:



and the next time we have to copy it will be because we have exceeded 128 values, and the 

ratio will be

With a little bit of thought, you will discover that this ratio will never reach the value 2.   Thus

over the life-span of the heap, the average number of copy operations per value in the set       

is < 2, which means it is in O(1).  Thus the total number of copy operations is in O(n*1) = O(n).

This is clearly optimal (you can’t even create a set of n values in less than O(n) time), so it 

turns out that the “copy when the array gets full” solution is an excellent one.

The second method for having no upper limit on the size of the max-heap is to actually store 

the heap in a binary tree using vertex objects and pointers.  We can use the number of values 

in the heap to determine exactly where where last leaf is, and this is how:  

We can label the edges of the tree with “0” on the “left-child” edges and “1” on the “right-

child” edges.  

Consider this heap, with the edges labelled as just described:



In this figure I have put the “number” of each vertex beside the vertex ... let’s look a the 

relationship between each vertex number, in binary, and the sequence of labels on the edges 

in the path that leads from the root to the vertex.

1 1 -

2 10 0

3 11 1

4 100 0-0

5 101 0-1

6 110 1-0

7 111 1-1

8 1000 0-0-0

9 1001 0-0-1



It’s pretty clear that we can get the sequence of edges that lead to vertex k simply by ignoring 

the first bit of the binary form of k.  (This is easy to prove by induction – I recommend doing 

this just for the exercise.)

So if we know there are n values in the heap, we can find the right-most leaf on the bottom 

level by using the binary form of n ... and we can find the first empty spot on the bottom level 

by using the binary form of n+1.

I remember being quite amazed the first time I saw this. 

However it offers no real advantage over the array-based method we have looked at … and in

practice will be significantly slower because operations involving pointers are slower than 

operations involving array elements.

We have seen that a max-heap allows us to implement a priority queue very efficiently.  This 

is not the only use of max-heaps.  We will now explore a very clever sorting algorithm based 

on a max-heap.



Heapsort

Suppose an array A contains a max-heap, stored in the manner we have already discussed : 

A[0] contains the size of the heap, and A[1] contains the root, etc.   For example, suppose A[0] 

= 5.  The values in the set occupy A[1] through A[5], and A[1] is the largest value.  When the 

set is sorted, these values should still occupy positions A[1] through A[5], and the largest 

value should be in A[5].

We could create the sorted set by creating a new array B.  First we could remove the largest 

value from the heap in A, put that value in B[5], and fix the heap in A.  Then we could remove

the new largest value from the heap in A, put that value in B[4], and fix the heap in A … and 

so on.  When we finish, the values would be properly ordered in B, and we could just copy 

them back to A.

But we don’t need the array B!  (Boldface is justified because what we are about to see is one 

of the coolest things in the world.)

If we pull A[1] out of the heap in A and fix the heap, the remaining values only occupy the 

positions A[1] through A[4] !!!  The value that we pulled from A[1] is supposed to end up in 

A[5], and A[5] is no longer part of the heap … so we can just put the value from A[1] in that 

location and carry on: we pull out the new value from A[1] and fix the heap … which leaves 

A[4] unused – so we put the value from A[1] there.

This is like magic – the position we need to store each value from the top of the heap becomes

vacant just at the moment we need it.  It’s like watching the RCMP Musical Ride – the horses 

weave in and out and the space each one needs to be in is miraculously empty when it gets 

there.

The algorithm looks like this:

for i = A[0] down to 2:

temp = remove_max(A)

A[i] = temp

This is one of the slickest, cleverest sorting algorithms around.  It runs in O(n*log n) time – 

which as we know is optimal (approximately n iterations of the loop, each taking O(log n) 

time) – and it requires only 1 extra memory location (to hold temp).  Merge-sort, by 

comparison, takes O(n) extra space to hold the merged items, and does a lot more data-

movements.  Quicksort runs faster in practice than Heapsort, which makes it the better choice

for important applications … but if I need to write an efficient sort that is hard to get wrong, 

Heapsort is the one I will write.



Now, there was a big assumption there … Heapsort only works if the data is organized into a 

max-heap.  The likelihood of that happening by luck is somewhere between not-a-chance and

no-way.   But we can take a randomly ordered set of values and build a max-heap out of them

in O(n * log n) time, simply by inserting all n values into an empty max-heap.   So the full 

heap-sort algorithm should be written as:

Heapsort(A):

organize A into a max-heap

for i = A[0] down to 2:

temp = remove_max(A)

A[i] = temp

Since the first step has the same complexity as the loop, the over-all complexity remains the 

same.

It turns out we can build the heap in O(n) time!  This will not affect the over-all complexity of 

Heapsort since the loop is still in O(n * log n), but it will reduce the actual running time of the 

algorithm.  Here is how we can do this:

For the purpose of this explanation we will assume that the lowest level of the heap is full.  

This means than n =   for some k, and the bottom level contains exactly  vertices.  

This simplifying assumption does not affect the validity of the argument, as we will see. The 

values in the set are randomly placed - our goal is to move them around to form a proper 

heap.  As we already know, the "physical" structure of the heap will not change - it is 

determined by the number of elements in the set.  All we need to do is reorganize the values.

The number of vertices in the bottom level of the heap is  .  The next level up has   

vertices.  Make each of these the root of a three-vertex heap, and move the values to make the 

valid structure in each of the little heaps.  This involves, at most, exchanging the root of each 

little heap with one of its children.

Now take each vertex in the next level up (there are no more than  of them), and make 

each one the root of a heap with two of the three-vertex heaps as its children.  Each of the new

heaps will have seven vertices.  Enforce the heap-property - this requires pushing the root 

value of each new heap down to its proper position - this requires no more than two data 

exchanges.

Now do the same at the next level, getting  heaps, each of which is built with no more 

than three data exchanges.

Carry on in this way until you end up with a single heap.



Clearly the bulk of the work in this process is the data exchanges, so we can get the 

complexity by counting those.  The total number of data exchanges is 

Well that looks like it might be a really large number … but it turns out that we can show that

for any x such that -1 < x < 1,         

(One way to check this is to use your skills from Grade 12 Math to do the division on the right

hand side – the result is exactly the sum on the left hand side.  Another way to check it is to 

multiply the both sides by       The result on both sides is exactly x.)

In our expression for the number of data exchanges, we see that we can apply this identity 

with     .  We continue like this: 



Thus we see that the total number of data exchanges is in O(n) … which means that building 

the heap is in O(n), as claimed.

The fact that we can build a max-heap in O(n) has another application.  Suppose we have a set

of n values and we want to find the k largest values in the set, for some value of k.  Using a 

heap, we can find them in O(n + k*log n) time  ... the n comes from creating the heap, and the 

k*log n comes from extracting the k largest values in descending order.  Compare this to 

other possible algorithms:  Sorting the whole set and then choosing the k largest items takes 

O(n* log n) time.  Looking through the set to find the largest, then searching again to find the 

second largest, then again for the third largest, etc, takes O(k*n) time.  The heap-sort 

approach clearly wins (note that for small values of n and k the third method might be faster 

because it doesn’t do any data movements, just comparisons).

The heap approach for extracting the k largest values in a set is particularly good if we don't 

actually know what k is in advance.  For example, we might need to add up the largest values

in the set until the total meets or exceeds some target value.  There's no point sorting the 

whole set if we only need a few large values, and we certainly don't want to repetitively 

search for the largest remaining value over and over if it turns out we need most of the values

in the set.

If we do know k in advance, there is yet another approach.  Using a very clever algorithm 

described in Section 9.3 of our text, we can actually extract the k largest items in the set in 

O(n) time, but in an unsorted order.  Then we can sort these in O(k*log k) time to get the 



items in the order we want.  This algorithm is well outside the scope of CISC-235 but I 

recommend it to your attention. 

            

Changing Priorities

Sometimes it becomes necessary to change the priority of an item in a priority queue – or 

even change the priority of many of the items at the same time.  A practical example of this 

would be a priority queue for a printer – a low priority item might never get printed if there 

is always at least one item with higher priority ahead of it in the queue.  One solution to this 

particular problem is to look at the queue on a regular basis (such as once every hour) and 

raise the priority of items using a formula based on how long the item has been in the queue.  

In this way low-priority items eventually become high-priority items.

The difficulty does not lie in changing the priority and fixing the heap – that is just a matter of

moving the item up or down in the heap.  The hard part is finding the item whose priority we

want to change.  We don’t want to search the whole heap, since we are doing everything we 

can to avoid O(n) operations.  We can’t search the heap in less than O(n) time because heaps 

are not organized as search trees: from a given vertex we have no way to know if we should 

recurse on the left side or the right side, so we have try both sides.

If you haven’t seen the solution to this, take a moment to think about how you would solve 

this problem: we want to be able to quickly find any item in the tree.  Let’s see, what data 

structure do we know that (when properly implemented) offers us expected search time in 

O(1) ?  The word expected gives it away – I am talking about a hash table in which the keys are

unique identifiers for the items, and the satellite data in the hash table are pointers to the 

locations in the max-heap where the items are located.

Let’s look at an example.  Suppose we have a heap of cats, containing “Simon” (priority 10), 

“Traill” (3), “Mocha” (7) and “Lindor” (2).  The heap might look like this:



We also have a hash table, which might look like this (the actual placement of the cats in the 

hash table obviously depends on the hash function.

“Traill” 4

“Mocha” 2

“Lindor” 3

“Simon” 1

If we want to change Mocha’s priority to 12, we look Mocha up in the hash table, which tells 

us Mocha is located in vertex 2 of the heap.  If the heap is stored in an array, this is all we 

need.  If the heap is actually stored in a binary tree, the hash table could give us a direct link 

to the vertex object containing Mocha.  Once we have access to the Mocha item we can change

its priority and push it up or down in the heap.   The complexity of this is good: if the hash 

table is well-designed then its operations should take O(1) time, and then pushing the item up

or down is in O(log n) since there that many levels in the heap.  Thus we can change the 

priority of an item in a priority queue in O(log n) time.



But wait – if we use this method to update the priority of every item in the heap, that will take

O(n * log n) time.  We would better off rebuilding the heap from scratch since we know that 

takes O(n) time.  This is another situation where we need to know about our particular 

application before we can choose a solution.  If priority changes are rare or we only change a 

few at a time, then pushing the changed items up or down in the heap is the best choice.  But 

if we change a lot of priorities at the same time we should just rebuild the heap using the new

priorities.  


