
CISC-235*

Test #1

January 31, 2018

Student Number (Required) ______________________

Name (Optional) ________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /10

Question 2 /15

Question 3 /10

Question 4 /15

TOTAL /50

Question 1 (10 marks)

Suppose and

Let

a) [4 marks] Determine the classification of

Solution: we know some

Therefore

Therefore

Marking: A solution that is incorrect but shows understanding of O

classification should get 2/4

b) [4 marks] Determine the classification of

Solution: we know

Therefore

Therefore

Marking: A solution that is incorrect but shows understanding of

classification should get 2/4

c) [2 marks] If possible, determine the classification of

Solution: from a) and b), we see

Marking: A solution that is incorrect but shows understanding of O

classification should get 1/2

Question 2 (15 marks)

Let Stack be a class that implements the stack data structure. Each instance of a

Stack has three defined methods:

push(x) add x to the top of the stack

pop() remove and return the top value of the

stack

isEmpty() return true iff the stack is empty

and a single accessible attribute:

count the number of items currently in the stack

Let S be a stack containing integer values. Write an algorithm that will take a

positive integer k as a parameter and move the bottom k values of the stack to

the top. If the stack contains k values, it should not be changed.

For example if the stack contains and k = 2, the final result should be

Your algorithm is allowed to create and use other stacks but cannot declare

arrays, linked lists or other data structures.

You may use the next page for your answer (though it should not require a full

page!)

Page for answering Question 2

My Solution:

def move(k):
if S.count <= k :

return // optional return statement
else:

Stack temp1 = new Stack
Stack temp2 = new Stack
for (i=S.count;i>k;i--) :

temp1.push(S.pop())
for (i=1;i<=k; i++) :

temp2.push(S.pop())
while (! temp1.isEmpty()) :

S.push(temp1.pop())
while (! temp2.isEmpty()) :

S.push(temp2.pop())
return // optional return statement

Marking:

Syntax is not crucial (since it is just pseudocode) – for example the for loops

could be written with Python syntax, or as “for i = 1 to k”, etc. There are

probably lots of other ways to solve the problem – I think that what I have

shown here is the simplest solution.

Solutions that correctly solve the problem should get full marks, even if the

method differs from my solution.

Solutions that are correct but have a minor error (such as a loop which goes

too far or ends too soon) should get about 13/15

Solutions that have the right idea but have significant errors – such as moving

k elements from the top to the bottom, or making other modifications to the

final order of the elements of the stack, should get about 10/15

Solutions that don’t really come close to solving the problem but demonstrate

a good understanding of stack operations should get about 8/15

Solutions that show only a weak understanding of stack operations should

get about 4/15

A blank page should get 0/15

Question 3 (10 marks)

Here is the recursive pre-order traversal algorithm for binary trees.

Pre_Order(v): # v is a vertex in a binary tree
 if v == nil:
 return
 else:

print v.value
 Pre_Order(v.left_child)
 Pre_Order(v.right_child)
 print v.value

Write a non-recursive version of the same algorithm (ie for a tree with a root

called root, the given algorithm Pre_Order(root) and your algorithm

your_Alg(root) must produce exactly the same output)

If you like, your algorithm may use the Stack class as defined in Question 2 of

this test.

Solution:

As many people realized, this question contains an error: the given algorithm is NOT a

Pre-Order traversal. It is actually sort of a combination of Pre-Order and Post-Order.

Some students wrote an iterative version of Pre-Order, and some wrote an iterative

version of the given genetically modified algorithm. I’ll show Stack-based solutions for

both.

Stack-based version of pre-order traversal:

The logic of this algorithm is simple. We initialize the stack with the root

variable, then loop while the stack is non-empty. At each vertex we print the

value, then push its children onto the stack in “right then left” order so that the

left child will be popped off and processed before the right child.

def pre_order(root):
if (root != nil):

Stack s = new Stack
s.push(root)

while (! s.isEmpty()) :
c = s.pop()
print c.value
if (c.right_child != nil):

s.push(c.right_child)
if (c.left_child != nil):

s.push(c.left_child)

return // return statement is optional

Stack-based version of Frankenstein traversal:

This algorithm is more complex. Since each value is to be printed twice, we pop

the top vertex off the stack and print it (as in the pre-order traversal), then check

to see if it has children. If not, we simply print it again, as required. If it does

have children but the most-recently popped vertex is a child of this vertex, then

it is time to do the second printing of this vertex. If neither of these situations

hold, we push the vertex back on the stack, followed by its children.

def monster(root):
if (root != nil):

Stack s = new Stack
Vertex last_pop = root // just an initialization
s.push(root)

while (! s.isEmpty()) :
c = s.pop()
print c.value
if (c.left_child == nil) &&
 (c.right_child == nil) : // no children

print c.value
else if (last_pop == c.left_child) ||
 (last_pop == c.right_child) :

// it’s time to print this vertex again
print c.value
// the action in the two clauses above is
// identical – they can be combined

else :
// put c and its children back on the stack
s.push(c)
if (c.right_child != nil) :

s.push(c.right_child)
if (c.left_child != nil) :

s.push(c.left_child)
last_pop = c

return // return statement is optional

Marking Question 3:

Regardless of which interpretation of the question each student chose, fully

correct solutions (which may or may not resemble mine) should get full

marks.

Solutions that are close to correct should get about 7/10 or 8/10. However

since the second interpretation required a more difficult solution, please be

more lenient when marking those solutions.

Solutions that demonstrate a good understanding of what was required

should get about 6/10, even if the solution has significant errors.

Solutions that show limited understanding of how to work with binary trees

should get about 3/10

A blank page should get 0/10

Question 4 (15 marks)

Suppose we have a Binary Search Tree containing a set of n integers, some of

which may be duplicates.

Write an algorithm called closest that takes two parameters:

t, which is a tree

x, which is a target integer

and returns the value in the tree that is closest to x. If there are two different

values that tie for closeness, your algorithm should return the smaller of the

two. Your algorithm should search only as much of the tree as it needs to.

For example, if the tree t is

then closest(t,5) should return the value 4 and closest(t,10) should

return the value 11

You may use iteration or recursion.

Please write your answer on the next page.

Page for answering Question 4

My solutions – iterative and recursive:

The logic behind both of these algorithms is the same: we basically execute the standard

search algorithm for x. At each vertex on the search path, we will either have found x,

or we are at a value < x, or > x.

If we have found x we can return it as the value that is closest to x

If we are at a value < x, no value in the left subtree can be closer to x than

this one so we can continue the search in the right subtree

If we are at a value > x, no value in the right subtree can be closer to x than

this one so we can continue the search in the left subtree

The only change to the search algorithm is to keep track of the seen value that is closest

to x. In the iterative version this is done by using a variable called “closest” that holds

the closest value to x seen so far. In the recursive version this is done by having each

vertex on the search path return the value in its whole subtree that is closest to x. The

value returned by the root is the closest in the entire tree.

Iterative:

def closest(t,x):
if (t.root == nil) :

ERROR
else:

current = t.root
closest = current.value
diff = abs(closest - x)
done = FALSE
while (! done) :

if (current == nil):
done = TRUE

else if (current.value == x) :
closest = x
done = TRUE

else :
this_diff = abs(current.value – x)
if (this_diff < diff):

diff = this_diff
closest = current.value

else if (this_diff == diff) && (current.value < closest):
diff = this_diff
closest = current.value

if (current.value > x):
current = current.left_child

else:
current = current.right_child

return closest

Recursive:

def closest(t,x):
if (t.root == nil):

ERROR
else:

return rec_closest(t.root,x)

def rec_closest(v,x):
if (v.value == x):

return x
else:

d1 = abs(v.value – x)
if (v.value > x) && (v.left_child != nil):

lc = rec_closest(v.left_child,x)
d2 = abs(lc – x)
if (d2 <= d1):

return lc
else:

return v.value
else if (v.right_child != nil):

rc = rec_closest(v.right_child,x)
d2 = abs(rc – x)
if (d2 < d1):

return d2
else:

return v.value
else:

return v.value

Marking:

Students do not have to raise an error condition when the tree is empty

Students do not have to duplicate my algorithms!

Solutions can be written in any form of code, pseudo-code or even text as

long as it is clear how every step is accomplished. For example “current =

current.left_child” could be expressed as “go down to the next vertex on the

left”

A solution that finds the closest value to x without exploring parts of the

tree that cannot contain the solution should get 15/15

A solution that finds the closest value to x but explores parts of the tree

that cannot contain the solution should get 10/15

A solution that only finds the closest value to x sometimes should get

around 7/15

A solution that does not really address the problem but shows an

understanding of how binary trees are structured should get around 5/15

A solution that does not solve the solve the problem and does not show

an understanding of binary trees should get around 2/15

A blank page should get 0/15

	TOTAL

