Subset Sum

Later in the course we will look at a class of problems that are generally considered to be extremely difficult to solve. Today we will examine one of those problems.

The Subset Sum problem: **Given a set S of n integers and a target value k, does S have a subset that sums to k?**

S is not necessarily a set in the pure mathematical sense: S is allowed to contain duplicates, whereas in a formally defined mathematical set all the elements must be distinct.

S is an example of what we call a decision problem: The answer for any instance is either “Yes” or “No”.

For example, let S = \{1,1,3,45,61,10000093\} and let k = 47. The answer is Yes because 1+1+45 = 47

Computer scientists believe that Subset Sum is so difficult that it is impossible to create an algorithm to solve it that runs in \(O(n^t)\) time, for any value of \(t\). Note that such an algorithm would have to solve all instances of the problem. It is easy to come up with fast algorithms that solve some instances of the problem.

However, we can certainly come up with a slow algorithm that does solve Subset Sum: the BFI algorithm simply examines every subset of S to see if any of them sums to the target value k. Since S has \(2^n\) subsets, this algorithm runs in \(O(2^n)\) time. (You may wonder why I don't include a time factor for computing the sum of each subset - in fact, the sum of each subset can be computed in constant time. **Exercise: see if you can see how to do this**.)
The reason for bringing up this problem now is to examine whether we can use D&C to improve on the BFI algorithm.

To see how, we first need to consider a much simpler problem.

Pair-Sum: Given a set S of n integers and a target integer k, does S contain a pair of values that sum to k?

Pair-Sum is obviously solvable in polynomial time: we can simply compute the sum of each pair of values in S, of which there are $\binom{n}{2} = \frac{n(n-1)}{2}$, which is in $O(n^2)$

But a better algorithm for Pair-Sum is to start by sorting S, then work through the sorted list from both ends, eliminating values when we determine they cannot be in a pair that sums to k.

Suppose the sorted set looks like this (drawn as if it is stored in an array)

| s_1 | s_2 | \cdots | s_{n-1} | s_n |

We start by computing $t = s_1 + s_n$. There are three possibilities:

- $t = k$: in this case we can stop ... we have found a pair that sums to k.
- $t < k$: in this case we know s_1 cannot be in a solution – adding s_1 together with any other element of S will give a total $< k$.
- $t > k$: in this case we know s_n cannot be in a solution – adding s_n together with any other element of S will give a total $> k$

Thus after one addition, we either stop with a solution or we eliminate either the smallest or the largest element of the set. We can now continue in exactly the same way on the remaining $n-1$ elements.
In pseudo-code, the algorithm looks like this:

```plaintext
Given S and k:
Sort S          # S is indexed from 1 to n because I don’t like
                # 0-based addressing
                # Sorting takes O(n*log n) time
left = 1
right = n
while left < right:
    t = S[left] + S[right]
    if t == k: Report “Yes” and exit
    elsif t < k: left++
    else: right--
Report “No” and exit
```

The loop executes < n times and each iteration takes constant time, so the algorithm runs in \(O(n \times \log n) + O(n)\) time, which simplifies to \(O(n \times \log n)\)

So we have reduced the \(O(n^2)\) time of the naïve algorithm to \(O(n \times \log n)\) for this clever algorithm. It may not seem like much but for large values of n this is a huge improvement.

The earliest reference I have found for this trick is in a textbook by Horowitz and Sahni. They don’t claim it as original but they don’t give a source.

This is as far as we got on this problem on Friday – we will finish it on Tuesday.