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Subset Sum

Later in the course we will look at a class of problems that are generally 

considered to be extremely difficult to solve.  Today we will examine one of 

those problems.

The Subset Sum problem:  Given a set S of n integers and a target value k, does

S have a subset that sums to k?

S is not necessarily a set in the pure mathematical sense: S is allowed to contain 

duplicates, whereas in a formally defined mathematical set all the elements 

must be distinct.

S is an example of what we call a decision problem:  The answer for any instance

is either “Yes” or “No”.

For example, let S = {1,1,3,45,61,10000093}   and let k = 47.   The answer is Yes 

because 1+1+45 = 47

Computer scientists believe that Subset Sum is so difficult that it is impossible 

to create an algorithm to solve it that runs in O( ) time, for any value of t.  Note 

that such an algorithm would have to solve all instances of the problem.   It is 

easy to come up with fast algorithms that solve some instances of the problem.

However, we can certainly come up with a slow algorithm that does solve 

Subset Sum: the BFI algorithm simply examines every subset of S to see if any of

them sums to the target value k.  Since S has  subsets, this algorithm runs in  

O( ) time.   (You may wonder why I don't include a time factor for computing 

the sum of each subset - in fact, the sum of each subset can be computed in 

constant time.  Exercise: see if you can see how to do this.)



The reason for bringing up this problem now is to examine whether we can use 

D&C to improve on the BFI algorithm.

To see how, we first need to consider a much simpler problem.

Pair-Sum: Given a set S of n integers and a target integer k, does S contain a pair

of values that sum to k?

Pair-Sum is obviously solvable in polynomial time: we can simply compute the 

sum of each pair of values in S, of which there are  

which is in  

But a better algorithm for Pair-Sum is to start by sorting S, then work through 

the sorted list from both ends, eliminating values when we determine they 

cannot be in a pair that sums to k.

Suppose the sorted set looks like this (drawn as if it is stored in an array)

We start by computing  .  There are three possibilities:

 : in this case we can stop … we have found a pair that sums to k.

 : in this case we know  cannot be in a solution – adding  together 

with any other element of S will give a total < k.

 : in this case we know  cannot be in a solution – adding  together

with any other element of S will give a total > k

Thus after one addition, we either stop with a solution or we eliminate either the

smallest or the largest element of the set.  We can now continue in exactly the 

same way on the remaining n-1 elements.



In pseudo-code, the algorithm looks like this:

Given S and k:
Sort S # S is indexed from 1 to n because I don’t like 

# 0-based addressing
# Sorting takes O(n*log n) time

left = 1
right = n
while left < right:

t = S[left] + S[right]
if t == k:  Report “Yes” and exit
elsif t < k: left++
else: right--

Report “No” and exit

The loop executes < n times and each iteration takes constant time, so the 

algorithm runs in O( ) + O( ) time, which simplifies to O( )

So we have reduced the O( ) time of the naïve algorithm to O( ) for this 

clever algorithm.   It may not seem like much but for large values of n this is a 

huge improvement.

The earliest reference I have found for this trick is in a textbook by Horowitz 

and Sahni.  They don’t claim it as original but they don’t give a source.

This is as far as we got on this problem on Friday – we will finish it on Tuesday.


