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Subset Sum Problem continued ...

We have seen how to solve the Pair-Sum problem efficiently, but we still haven’t

seen how to improve the algorithm for the general subset sum problem!  Bear 

with me for one more preliminary problem.

2-Set Pair-Sum:  Given sets X and Y with n elements in each set, and a target 

integer k, is there an   and a   such that x + y = k?

It should be clear that we can solve 2-Set Pair-Sum in O(n log n) time.  We sort 

both sets, then start by letting  .  As before, if  we are done, if

 we can eliminate , and if  we can eliminate 

At last we are ready to attack Subset Sum in all its glory.  This very clever 

method was first described by Horowitz and Sahni.



Given set S and target integer k:

Split S arbitrarily into two equal sized subsets  and .  
  #If S has an odd number of elements, make the split as even as possible. 
  #It doesn't matter which of  or  is bigger in this case.

# If S does have a subset T that sums to k, there are three possibilities:
#    - all the elements of T are in 
#    - all the elements of T are in 
#    - some elements of T are in  and some are in 

Compute the sums of all subsets of .   Let this set of sums be  
Compute the sums of all subsets of .   Let this set of sums be  

if k   or k  :
report "Yes" and stop # this takes care of the first two 

# possibilities
else:

# we need to determine if there is a subset of  that 
#  can be combined with a subset of  to give a sum of k.
# This is equivalent to asking if there is an   and        
#      and a  such that  … it is an instance of
#      the 2-Set Pair-Sum problem 

           Sort  into ascending order 
- label the elements    ...

  Sort  into ascending order 
- label the elements 

       Let left = 1     and  let right = length( )
       while left  length( ) and right  1:

t = [left] + [right]
if t == k:

report "Yes" and exit
elsif t < k:

                   # this means that [left] is too small to be in any 
# solution to the problem
left++

else:   
                  # this means that [right] is too big to be in any

# solution
right--       

report "No"

You should convince yourself that this algorithm correctly solves Subset Sum in 

all cases.  We now determine its complexity.

Computing the sets   and  takes   time since each of  and  has  

elements.   and  each have   elements.  Sorting each of  and  takes 



 time, which simplifies to   .  The loop iterates at 

most   times, doing constant-time work on each iteration.

Thus the dominant step is the sorting of   and , and the entire algorithm 

runs in    time.

This is still exponential (some call it sub-exponential because the exponent is < 

n) but it is way better than the BFI algorithm.   This table shows the first few 

values in the comparison (with n even, to make it easy on my brain).

2 4 4

4 16 16

6 48 64

8 128 256

10 320 1024

12 768 4096

What made this work?  It was the result of splitting S into  and , thereby 

reducing the number of subsets we had to sum from  to   … and then 

using the 2-Set Pair-Sum algorithm to eliminate combinations.



Some very interesting questions came up in class and after class:

Can we improve the efficiency even more by splitting S into a larger group

of smaller sets – such as  each of size   ?  This sounds good – the 

number of subsets we actually look at is reduced to .  But now we have to 

consider combining subsets from every combination of  (for 

example, we need to check all sums containing one value from , one value 

from  and one from , and all sums containing one value from  and one 

value from , etc.)  This balances out the time we saved by making the sets 

smaller.

Can we improve the efficiency even more by using the same technique 

recursively to see if  or  contains a subset that sums to k?   Yes we can, but 

these are not the time-critical steps of the algorithm.  The step that looks for a 

solution involving part of  and part of  will still have the same complexity. 

Can we improve the efficiency even more by not only computing the sum 

of the smallest value in  and the largest value in , but also computing the 

sum of the largest value in  and the smallest value in ?   Yes, this lets us 

eliminate two values on each iteration, which cuts the maximum number of 

iterations by a factor of 2.  However we do twice as much work in each iteration 

so it balances out.

Does that mean that this algorithm cannot be improved?  Not at all!!!  This is just

the best algorithm I know of for this problem – you could be the person who 

discovers a better one.

(If you enjoy working on this kind of problem, here is a good one:  “Powers of 

2” Subset Sum.   Given a collection of integers S, in which each element is a 

power of 2 (repetitions allowed), and an integer k, does S have a subset that 

sums to k?   For example,   .  For this 

instance the answer is “Yes” because .   The question 

is:  can you find a polynomial time algorithm for this problem?)



The last few minutes of class were spent looking very briefly at one more quite 

clever application of the Divide and Conquer method.  

Efficient computation of  :

Let x be any number and let n be any positive integer.  The naïve method for 

computing  would be something like this:

def power(x,n):
result = x
for i = 2 to n:

result = result * x
return result

This uses n-1 multiplications.  We can do better by observing the following 

equalities

     when   n  is  even

     when n is odd

This is clearly a D&C approach, and it is very efficient because the two 

subproblems at each level are identical!  We only have to solve each of them 

once.



An example will make everything clear.  Suppose we want to compute 

           

                     

                              

                                       

       

This uses a total of 7 multiplications instead of the 36 needed by the naïve 

algorithm.  It’s pretty easy to see that this  algorithm has recurrence relation

T( ) =     when n = 1

T( ) = T  + when n > 1

As usual, for simplicity we assume  is always an integer – if this is not true, the 

value of    just gets rounded down.

In fact it is the same recurrence relation as we saw for binary search, and it has 

the same complexity:   O( )



I offered one last observation about this process, without proof or explanation:

The binary version of 37  is  100101    (32+4+1).   If we look at the lines of the 

solution we see that some of them just square the value from the line below, and

others square the value from the line below and multiply by x.  We can include 

the bottom line in the second category because it “introduces an x”.  Designate 

the “just square” lines as “0” lines, and the “square and multiply by x” lines as 

“1” lines.  Now we can give a short-hand notation for the computation of x^37 

as

 :   1 line

0 line

1 line

0 line

0 line

1 line 

We know the last line is   and we can work upwards to reconstruct all the 

other lines – so we can represent the entire bottom to top process as 100101

But look!  100101 is exactly the binary representation of 37



And it turns out that this always works (proving this is a nice exercise).  So if we

want to compute , we just take the binary representation of 109 … which is 

1101101  … and our computation looks like

1:

1:

0:

1:

1:

0:

1:

Test 1 will cover everything up to this point.


