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NP-Completeness

We have just seen that if we could solve SAT in polynomial time, then we could 

solve every problem in  in polynomial time.  This is such a powerful 

property that we use a special term to describe it: we say that SAT is NP-

Complete.

The formal definition of this term is:

A problem X is NP-Complete if:

•

•

The practical significance of this is that  virtually all computer scientists are 

convinced that NP-Complete problems cannot be solved by polynomial-time 

algorithms.  When faced with a new problem, we must ask ourselves if it is 

reasonable to hope for a polynomial-time algorithm.  If the problem is NP-

Complete, then the answer is almost certainly “No”

So we turn to the question of how we can prove that a problem is NP-Complete. 

Fortunately we don’t have to do what Cook and Levin did (i.e. show how to 

transform every instance of every problem in NP into an instance of our new 

problem in an answer-preserving way, in polynomial time.)

Given a problem X in the class , if we can show that a known NP-Complete 

problem reduces to X then we know that X is NP-Complete as well.



Putting this more precisely:

A problem  is NP-Complete if:

•

•  NP-Complete problem   such that  

Why is this equivalent to the previous definition?  What we are doing is 

showing that all problems in  reduce to X, but we are using some known 

NP-Complete problem to stand in for all the other problems in .  We can do 

this because we already know that all problems in  reduce to Y (because we 

know Y is NP-Complete).  If we can prove that Y  X, then the transitivity of   

tells us immediately that all problems in  reduce to X … so X satisfies the 

original definition of NP-Completeness.

To demonstrate this method of proving that a problem is NP-Complete we will 

use a variant of SAT called CNF-SAT.  CNF-SAT is known to be NP-Complete.

CNF-SAT is defined as follows:  Let E be a Boolean expression with k clauses 

and n literals (literals = Boolean variables, possibly negated), in which

    - each clause contains only "OR" connectives

    - the only connectives between clauses are "AND"s

CNF-SAT asks "Is there a way to assign True and False to the literals so that E is 

True?"

Clearly CNF-SAT is in  - if the answer is YES and we are told which literals 

should be True and which should be False, verifying the answer is easy: we just 

make sure there is at least one True literal in each clause of E.



Example:   Let 

In this example E is satisfiable.

I’m not going to prove that CNF-SAT is NP-Complete, but the proof involves 

showing that any instance of SAT can be re-written in CNF .  We will use the fact

that CNF-SAT is known to be NP-Complete to prove that a problem called k-

Clique is also NP-Complete.

The k-Clique Problem:  Given a graph G and an integer k, does G contain a set 

of k vertices that are all mutually adjacent (connected by edges)?

(Notice that our proof does not involve showing that k-Clique reduces to CNF-

SAT - we already know this, thanks to Cook and Levin.  We need to show that 

CNF-SAT reduces to k-Clique.)

First we observe that k-Clique is in :  if the answer to an instance of k-Clique

is YES and we know the details of the answer, we can easily verify that the 

required edges are present in the graph.

To show that CNF-SAT reduces to k-Clique, we start with an arbitrary instance 

of CNF-SAT: a boolean expression E in CNF.  We need to construct an instance 

of k-Clique (i.e. a graph G and an integer k) in such a way that G has a k-clique 

iff E is satisfiable.

Note that even though we cannot put any restrictions on E, we do know that E is

some specific Boolean expression in Conjunctive Normal Form.  We can use all 

details of E when we create G and k.  



To motivate the construction of G, we can reflect on the two problems we are 

trying to connect.   If E has a satisfying truth assignment, then we must be able 

to set (at least) one literal to True in each clause, and of course the things we set 

to True must be non-contradictory – we can’t have  being true in one clause 

and  being true in another clause.   A graph G has a k-clique if we can find a 

group of k vertices in G, such that they are all adjacent to each other.   Is there a 

way that we can transform the literals in E to vertices in G?  Can we relate 

“setting one literal to True in each clause, in a non-contradictory way” to 

“finding k vertices, all of which are adjacent”?

We can!   We’ll start by creating a vertex for each literal in E, and group them 

together according to the clause of E they come from.   We’ll label each vertex 

with the literal it represents.  So a clause   would be represented 

by a set of vertices  

To satisfy E, we need to make sure there is a true literal in each clause.  To relate 

this to a k-clique in the graph we are building, we need to make sure the k-

clique contains a vertex from each clause-group of vertices.  We can ensure this 

by not having any edges within each clause-group.  This means that any k-

clique in the graph can only contain vertices from different clause-groups.



But we do need edges!  Remember that in a satisfying truth assignment for E, 

the only restriction is that we can’t use a literal as True in one clause and False 

in another.  So the corresponding restriction on a k-clique in G is that it cannot 

contain two vertices with contradictory labels (such as  and ).  To make 

sure this doesn’t happen, we simply omit edges between contradictory vertices.

In summary, we add an edge between every pair of vertices except for

    - vertices in the same clause-group

    - vertices whose labels are direct contractions of each other 

Clearly G can be constructed in O( ) time where n is the length of E.

To complete the constructed instance of k-Clique we need the integer k.  Note 

that any clique in G can contain at most one vertex from each of the clause-

groups, so the number of clauses in E is an upper bound on the size of the 

largest clique in G.  And if we can find a clique that does contain one vertex from 

each clause-group, that would correspond to choosing one literal from each 

clause of E.  This is exactly what we want to do in a satisfying truth assignment. 

We let k = the number of clauses in E.

The graph G and the integer k form an instance of k-Clique.



Here is an example (mercifully smaller than the one we did in class):

Let   



So far we have shown that we can transform any instance of CNF-SAT into an 

instance of k-Clique in polynomial time.  Now we have to show that the 

transformation is answer-preserving.

We will show that the answer to the instance of CNF-SAT is YES iff the answer 

to the instance of k-Clique is YES.

First direction:  Suppose the CNF-SAT answer is YES - i.e. suppose E is 

satisfiable.  Consider any assignment of True and False to the literals in E that 

makes E true. There must be at least one literal in each clause that is True.  For 

each clause, choose a literal in that clause that is True, and select the 

corresponding vertex in G.  

Claim: these vertices must form a k-clique.  First, there are certainly k of them 

(one from each clause).  Suppose that some pair of these vertices are not 

adjacent.  That could only happen if they were in the same clause-group (they 

aren't) or their labels contradicted each other.  But if their labels contradicted 

each other, that would mean some literal was both true and false in the truth 

assignment that satisfies E - which can't happen.  Thus all of the selected vertices

are adjacent to each other, and they form a k-clique.

Second direction:  Suppose G contains a k-clique.  Due to the way we 

constructed G, the k-clique must contain one vertex from each clause-group.  

For each of the vertices in the k-clique, select the corresponding literal in the 

corresponding clause of E.  Set all these literals to be True.  There is no danger of

attempting to assign True to a variable and to its negation, because the k-clique 

in G cannot contain any edges between things that negate each other.  Now we 

have one True literal in each clause.  Assign True and False to any unassigned 

literals in any consistent way (i.e. don't attempt to assign both True and False to 

the same variable) .  These assignments are effectively irrelevant because we 



already have one True literal in each clause of E, which means that E is 

satisfiable.

Thus our polynomial time reduction from CNF-SAT to k-Clique is answer 

preserving.  Therefore k-Clique is NP-Complete.

Note that when we said "suppose E is satisfiable", we never said anything about 

how we might actually find the truth assignment that we then use to select 

vertices in G.  Similarly when we said "Suppose G contains a k-clique" we never 

said anything about how we find the k-clique that lets us choose literals in E.  

There is no suggestion in this proof that either of these problems can be solved 

in polynomial time (in fact, the implication is that they cannot).  What the proof 

shows is that IF the answer to either instance is YES, then the answer to the 

other instance is also YES.  

We are still no closer to solving either of these problems but now that we know 

they are both NP-Complete, we know that finding a polynomial-time algorithm 

for either one would also give us a polynomial-time algorithm for all problems 

in NP ... and in practice, we conclude that k-Clique is almost certainly not 

solvable in polynomial time.

You may ask the perfectly reasonable question "How did anyone come up with 

that reduction?"  The answer, as for so many other difficult problems, is that it 

probably took a long time, with many false starts.   The relationship between 

these two problems is certainly not an obvious one.


