
20191122

Reduction of k-Clique to Vertex Cover

 As we have just seen, proving that a problem X is NP-Complete by reducing

SAT (or CNF-SAT) to X can be arduous. Part of the difficulty is that Boolean

expressions don’t really look like graphs, or sets of integers, or points in a plane,

or any of the thousands of other problem domains that we are interested in. So

reducing SAT to a problem of some other type can require a lot of creativity.

Fortunately we usually don’t have to do that. We saw in the previous notes that

we can show a problem X is NP-Complete with a reduction from any NP-

Complete problem. So now that we know k-Clique is NP-Complete, we can use

it to show that other problems are NP-Complete … and then we can use them to

show that still more problems are NP-Complete. Each new problem that is

identified as NP-Complete gives us another tool that we can use to expand the

NP-Complete set. In other words, proving that problems are NP-Complete gets

easier and easier.

There are online lists of known NP-Complete problems. Here’s one to get you

started if you are interested in exploring this topic:

https://cgi.csc.liv.ac.uk/~ped/teachadmin/COMP202/annotated_np.html

Here is an illustration of how a reduction can be constructed between two

problems that are in the same domain. This is one of the very earliest reductions

found.

https://cgi.csc.liv.ac.uk/~ped/teachadmin/COMP202/annotated_np.html

The k-Vertex Cover Problem: Let G be a graph on n vertices. A vertex cover of

G is a subset S of G’s vertex set with the property that every edge has at least

one end in S. A k-vertex cover is a vertex cover that contains exactly k vertices.

Here’s a simple (and almost realistic) application of this problem. Suppose the

graph represents an art gallery – the edges represent hallways that are filled

with valuable paintings, and the vertices represent rooms where the hallways

meet. You need to place guards in the rooms so that every hallway can be

watched by at least one of the guards. If the graph has a k-vertex cover then you

can guard the entire gallery with k guards.

(This is a simplified version of a much more general problem in computational

geometry. In the general problem the physical dimensions of the rooms and

hallways are considered. This is a much-studied problem – with some very

sophisticated results.)

Another application (more mundane but perhaps more practical) is to test for

link-failures in a communication network. If each vertex represents a node in

the network and the edges represent links that are potentially subject to failure,

then a k-vertex cover gives us a set of k nodes that are capable of testing every

link in the network by pinging the node at the other end.

Here’s a graph

 and here’s a vertex cover of size 6

and here’s a vertex cover of size 5

You might want to convince yourself that even though the 6-vertex cover is not

the smallest vertex cover of the graph, it has no redundant vertices – if we try to

reduce it to a 5-vertex cover by taking out any of the vertices, we find that there

is at least one edge of the graph that is not covered. (A quick way to see that

this is true is to observe that each of the 6 vertices in the cover has at least one

neighbour that is not in the cover.)

So this graph has a 5-vertex cover … but does it have a 4-vertex cover? Is there a

better algorithm to answer this than the BFI algorithm that simply tries every

combination of 4 vertices?

We’re about to prove that the answer is (almost certainly) “No, there is no better

algorithm for this problem.”

Theorem: k-Vertex Cover is NP-Complete.

Proof:

Claim: k-Vertex Cover is in

If the answer to an instance of k-Vertex Cover is Yes and we are told which k

vertices form the cover, we can check all edges to confirm that each edge has at

least one end in the cover in polynomial time. Thus k-Vertex Cover is in .

Claim: k-Clique k-Vertex Cover

This proof has the potential to be confusing because the “target value” will

change. That is, we will start with an instance of k-Clique where the size of the

required set of vertices has a particular value and we will construct an instance

of k-Vertex Cover where the size of the desired set has a different value. But we

will see that it all works out in the end (ie the transformation is answer-

preserving).

Let be an instance of k-Clique, where is a graph on n vertices and is

an integer. That is, we are asking “Does contain a set of vertices that are all

adjacent?”

To build a related instance of k-Vertex Cover (remember, the k is going to be

different!) we first construct the graph which is the complement of .

Definition: Let be a graph on n vertices. Then , the complement of , is

defined on the same set of vertices, with the edge set of containing exactly the

edges that are not present in . Formally, we have

Here’s an example:

Note that given , we can easily construct in polynomial time. Now we need

to determine how we can phrase a vertex cover problem on that is answer-

preserving with the original k-clique problem on .

We’re going prove this result:

Part 1: Suppose G has a k-clique. Without loss of generality we can assume that

the vertices in the k-clique are and the rest of the vertices are

Note that all the edges of the form where are in (this is

the definition of a k-clique) … which means that none of these edges are in .

Therefore all edges of have at least one end in . Therefore

 is a vertex cover of , with size

Thus “ has a k-Clique” “ has an (n-k)-Vertex Cover”

Part 2: Suppose has an (n-k)-Vertex Cover. Again without loss of generality,

assume the vertices that form this vertex cover are numbered .

This means every edge in has at least one end in this set. Therefore no edge of

 has both ends in the set . Therefore every possible edge with both

ends in is in . Therefore the vertex set forms a k-clique

in .

Thus “ has an (n-k)-Vertex Cover” “ has a k-Clique”

Putting Parts 1 and 2 together we are able to conclude that

 has a k-clique iff has an (n-k)-vertex cover

And that’s our reduction! We transform the question “Does have a k-clique?”

into the question “Does have an (n-k)-vertex cover?”

We’ve shown that the construction of takes polynomial time, and we have

shown that the transformation is answer-preserving.

Thus we conclude that k-Clique k-Vertex Cover

Therefore k-Vertex Cover is NP-Complete.

Note 1: I can’t stress strongly enough that when we write something like

“k-Clique k-Vertex Cover” , the “k” is really just a signal that there is an

integer parameter that is an essential part of each instance of the problem. It’s

not a variable that is bound to have the same value on both sides of the

relation. When we write “k-Clique k-Vertex Cover” what we mean is “each

instance of the clique problem with a specified parameter value can be

transformed into an instance of the vertex cover problem with a (possibly

different) specified parameter value, in an answer-preserving way”.

Note 2: When we first introduced the concept of an answer-preserving

transformation between two problems X and Y, we said “Instances of X with Yes

answers must map onto instances of Y with Yes answers, and instances of X

with No answers must map onto instances of Y with No answers”.

But in the two proofs of NP-Completeness we have done, we have done

something that looks a bit different: we have proved that when an instance of X

is transformed into an instance of Y, the answer to the original X instance is Yes

iff the answer to the instance of Y is Yes. It may look like we are not requiring

that No answers are preserved.

In fact, we are preserving No answers as well as Yes answers. To see that this is

true, suppose we have proved that the X answer is Yes iff the Y answer is Yes.

Now suppose at least one No answer is not preserved. This would mean that

there is some instance of X where the answer is No, which gets transformed into

an instance of Y where the answer is Yes. But our original supposition was that

we have proved that if the Y answer is Yes, then the X answer must also be Yes.

So we are in a state of contradiction: the X answer is No but it must be Yes. The

most recent supposition was that some No answer to X is not preserved. This

supposition led to a contradiction so it must be false. Therefore if we have

proved that the X answer is Yes iff the Y answer is Yes, then all No answers are

preserved as well.

