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This is a closed book test.  You may not refer to any resources. 

This is a 50 minute test.

Please write your answers in ink.  Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.



QUESTION (15 marks)

Let A and B be two sets, each containing n integers in random order.  

Each of the sets is stored in an n-element array.

Create an algorithm to compute A  B  (that’s “A intersect B”).  Your 

algorithm should run in O( ) time.

(A note on data structures: many people are tempted to solve 

problems like this using hash-tables which give O(1) expected case 

search time.  Unfortunately the worst case search time for a hash-

table is O(n).)

Express your algorithm in clear pseudo-code or a standard 

procedural language.  You may assume that sort() is a built-in 

function that runs in O( ) time.

Solution:

# assuming arrays are indexed from 1 to n

A_B_intersect = empty list 

A.sort() # using the built-in sort function
# Note:  syntax is not important here:
#      “sort(A)”  or “sort A” is fine

for i = 1 to n:
use binary search to search A for B[i] # takes O(log n)

# time
if found, add B[i] to A_B_intersect



Analysis:  the sort takes O(n*log n) time.  The loop iterates n 
times and each iteration takes O(log n) time.  Thus the loop takes 
O(n*log n).  Thus the entire algorithm takes O(n*log n) time

Alternative solution:

A_B_intersection = empty list

A.sort()
B.sort()

A_pos = 1
B_pos = 1

while (A_pos <= n)  and  (B_pos <= n):
if A[A_pos] == B[B_pos]:

add A[A_pos] to A_B_intersection
A_pos ++
B_pos ++

else if A[A_pos] < B[B_pos]:
A_pos ++

else:
B_pos ++

Analysis:  The sorting operations both take O(n*log n) time.
The loop iterates at most 2*n times, and does constant
time work on each iteration so the loop takes O(n) 
time.
The sorting is the most time consuming part of the 
algorithm so the whole algorithm takes O(n*log n) time

Other solutions are certainly possible.



QUESTION (15 marks)

What is the computational complexity (ie the “big O” class) of this 

algorithm?

Mystery(n):
if n <= 1:

print 1
else if n <= 100:

print n
Mystery(n-1)

else:
print n
Mystery(n/2)

Solution:

When determining the Big O classification we only worry about 
what happens when n is arbitrarily large.  So it really doesn’t 
matter what happens when n <= 100 ... the “else” clause is the 
only one that matters.  For this part, T(n) = c + T(n/2) ... and 
we know that this means the algorithm is in O(log n)



QUESTION (15 marks)

Consider the Path Product Problem:  Given a graph G in which every 

edge is weighted with a number in the range [0 .. 1] , and given two 

identified vertices A and B, find a path from A to B that maximizes 

the product of the weights of the edges in the path.

For example in this graph the optimal path from A to B is A-D-B 

because 0.6 * 0.5 is greater than the product of the weights in any 

other path from A to B

Dijkstra’s Algorithm be adapted to solve the Path Product Problem.

Dijkstra’s Algorithm is stated on the next page, exactly as given in the

course notes.  This version finds the least-weight paths from A to all 

other vertices.  You are not required to change it to terminate as soon 

as B is reached.



Dijkstra(W, A):

Cost[A] = 0

Reached[A] = True

for each other vertex x:

Reached[x] = False

for each neighbour x of A:

Estimate[x] = Weight(A,x)

Candidate[x] = True

for all other vertices z:

Estimate[z] = infinity

Candidate[z] = False

while not finished:

# find the best candidate

best_candidate_estimate = infinity

for each vertex x:

if Candidate[x] == True and Estimate[x] < best_candidate_estimate:

v = x

best_candidate_estimate = Estimate[x]

Cost[v] = Estimate[v]

Reached[v] = True

Candidate[v] = False

for each vertex y: # update the neighbours of v

if W[v][y] > 0  and  Reached[y] == False:

if Cost[v] + W[v][y] < Estimate[y]:

Estimate[y] = Cost[v] + W[v][y]

Candidate[y] = True

Predecessor[y] = v

Explain how to modify this algorithm to solve the Path Product 

Problem.  You don’t need to copy the whole algorithm - just show the

lines that need to change.



Solution:

The key to this problem is realizing that since all the edge weights
are <= 1, every time we extend a path with another edge the 
resulting path product value must be <= the value before we 
added the edge.  So if we choose the candidate x that has the 
maximum path product estimate, we know that path must be the 
best path to x – because all other paths to candidates have 
product values <= the one we have chosen, and extending those 
paths can only reduce their path product values.  Thus any other 
path to x must have product value <= the path we have already 
found.

The changes required are simple – most relate to the fact that we 
are maximizing, not minimizing:

Old line New line

Estimate[z] = infinity Estimate[z] = 0

best_candidate_estimate = 
infinity

 best_candidate_estimate = 0

if Candidate[x] == True and 
Estimate[x] < 
best_candidate_estimate:

if Candidate[x] == True and 
Estimate[x] > 
best_candidate_estimate:

if Cost[v] + W[v][y] < 
Estimate[y]:

if Cost[v] * W[v][y] > 
Estimate[y]:

Estimate[y] = Cost[v] + W[v][y] Estimate[y] = Cost[v] * W[v][y]

The lines to be changed are highlighted in the code shown above.



QUESTION (15 marks)

Let A be an array of n distinct integers (n  3), arranged so that the 

integers start out increasing, and then decrease.   For example A 

might look like this:

A = [ 2, 5, 7, 93, 86, 81, 77, 34, 22, 11, 9, 8, 6]

Create an algorithm that finds the largest value in A in O( ) time.  

Your algorithm must solve all instances of the problem, not just the 

one given in the example.

Solution:

We can adapt Binary Search – instead of seeking a particular value
we are seeking a value that is larger than both its neighbours.  If 
the value we look at is larger than one neighbour and smaller than
the other, we know which side the largest value is on so we shrink 
our search area accordingly.



def Max_find(A): # A is indexed 1 to n
first = 1
last = n # we know the initial value of last is >= 3
while last – first >= 2:

mid = (first+last)/2 # integer division
if (A[mid] > A[mid-1]) and (A[mid] > A[mid+1]):

return mid # we found it!
else if A[mid] < A[mid-1]:

# the max value lies to the left 
last = mid-1

else:
# the max value lies to the right
first = mid+1

# after the loop ... either first == last or first = last – 1
if first == last: # there’s only one spot left

return first
else: # it’s the larger of the two remaining

# values
if A[first] > A[last]:

return first
else:

return last

I’ve annotated my solution for explanatory purposes.  Your 
solution would not need so many comments.

This solution is not unique.


