
CISC-365*

Test #1

January 30, 2019

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /15

Question 2 /10

Question 3 /10

Question 4 /15

TOTAL /50

QUESTION 1 (15 Marks)

Let be a problem in the NP class. The details of are unimportant

but you can assume that each instance of consists of a set of

integers, and another integer .

(Parts (a) through (e) are independent of each other. Each part is

worth 3 marks)

(a)Suppose we find an algorithm that solves in time.

Does this give us any information about whether is in P, or

whether is NP-Complete? Explain.

Solution: This gives us no information. Problems in NP can all be

answered in exponential time by examining all possible solutions.

(b)Suppose we are able to prove that every possible algorithm for

 requires at least steps. Does this give us any information

about the classes P, NP, and NP-Complete? Explain.

Solution: This would prove that P != NP because now we know

there is at least one problem in NP that is not in P. It would prove

that no NP-Complete problem can be solved in polynomial time

(even if X itself is not NP-Complete).

(c) Suppose we are able to show that . Does this

give us any information about whether is in P, or whether

is NP-Complete? Explain.

Solution: This gives us no information. We know X is in NP, and

we know k-Clique is NP-Complete. From these facts we already

know that X k-Clique

(d) Suppose we are able to show that . Does this

give us any information about whether is in P, or whether

is NP-Complete? Explain.

Solution: We now know X is NP-Complete because a known NP-

Complete problem reduces to X. Based on this knowledge we are

very confident that X is not in P

(e) Suppose we find an algorithm that solves in time

(remember that is part of the instance definition). Does this

give us any information about whether is in P, or whether

is NP-Complete? Explain.

Solution: this gives us no information. cannot be classed as

polynomial time because is not fixed. We have no evidence that X

is NP-Complete.

Marking:

For each part:

Correct answer and reasonable explanation 3/3

Correct answer and poor or no explanation 2/3

Incorrect answer with some explanation 1/3

Incorrect answer with no explanation 0/3

QUESTION 2 (10 Marks)

The 3-Colouring Problem 3COL: Given a graph G on n vertices, can

we colour the vertices of G using no more than 3 colours in such a

way that no vertices that are joined by an edge have the same colour?

The 2-Colouring Problem 2COL: Given a graph G on n vertices, can

we colour the vertices of G using no more than 2 colours in such a

way that no vertices that are joined by an edge have the same colour?

3COL is known to be NP-Complete. However there is a polynomial-

time algorithm for 2COL. We can call this algorithm 2C-ALG.

Consider this algorithm for 3COL:

Let the colours be red, yellow, blue
For each subset T of the vertex set of G: {

if T contains any vertices that are adjacent:
skip this T

else:
colour all vertices in T red
temporarily delete these vertices from G
use the polynomial-time 2C-ALG algorithm to see if

the remaining vertices can be properly
coloured with yellow and blue

if the answer is “Yes”: print “Yes” and exit
else: restore G to its original state

}
print “No” # all attempts to 3-colour G have failed

This algorithm correctly solves 3COL .

Does this algorithm prove P = NP? Explain why or why not. If this

space is too small for your answer, please use the back of this page.

Solution: The algorithm does not prove P = NP. Each iteration of

the “for each” loop executes in polynomial time, but there are

subsets of the vertex set of G so the loop may execute times.

Thus the complexity of this algorithm is not polynomial.

Marking:

Any solution that recognizes that there 10/10

are subsets to be checked, so the algorithm

is not polynomial

Any solution that says the algorithm takes 7/10

exponential time without relating it to the

number of subsets of the vertex set

Any solution that says the algorithm does 5/10

not prove P = NP but gives an invalid

explanation, such as “These problems are

not in NP”

Any solution that says the algorithm does 4/10

not prove P = NP but gives no reason

Any solution that says the algorithm does 2/10

prove P = NP, and tries to justify it

Any solution that says the algorithm does 1/10

prove P = NP, with no explanation

QUESTION 3 (10 marks)

Consider this variant of the Subset Sum problem:

25_Value_Subset_Sum: Given a set S of exactly 25 integers and a

target integer k, does S contain a subset that sums to k?

Prove this problem is in P by describing an algorithm to solve any

instance of the problem in polynomial time. You are not required to

express your algorithm in a programming language – simply explain

it in sufficient detail to demonstrate that it runs in polynomial time.

You do not need to compute the exact order of your algorithm.

Solution: S has exactly subsets, which is a large but constant

number. Therefore we can examine all subsets of S in constant, ie

O(1) time.

Marking:

Any solution that correctly explains that the problem 10/10

can be solved in O(1) (ie constant) time

Any solution that proposes an algorithm that runs in 7/10

 time for some k > 1

A solution that proposes an algorithm that actually 4/10

runs in exponential time

A solution that proposes an algorithm that does not 1/10

solve the problem

QUESTION 4 (15 Marks)

Recall the Partition Problem: Given a set of integers

 , does contain a subset that sums to exactly

 (ie, half of the total sum) ?

We know that Partition is NP-Complete.

Consider this problem:

 : Given a set of integers (which may contain duplicate values),

can be divided into 3 disjoint subsets that all sum to the same

value?

For example, if then the answer to is

“Yes” because can be divided into each

of which sums to 12.

(a) [5 marks] Prove that is in the class NP

Solution: is clearly a decision problem. Let T be any instance

of with n elements. If the answer is “Yes” and we are given the

three subsets, we can sum each of the subsets in O(n) time, and

confirm that the sums are equal in O(1) time. Therefore the “Yes”

solution can be verified in polynomial time, so is in NP

(b) [10 marks] Prove that

Solution: Let be an instance of Partition.

Construct an instance T of as follows:

Compute

If is odd,

If is even,

let

This transformation clearly takes O(n) time.

Proof that the transformation is answer-preserving:

Suppose the answer to the Partition Problem on S is “Yes”

Then S can be divided into two subsets that each sum to , ie

they each sum to . Let these subsets be and . Then T can be

divided into , and , each of which sums to – so the answer

to on T is “Yes”

Now suppose the answer to on is “Yes”. We know cannot

be {1}, so we know has an even sum. The sum of all elements of

 is , so each of the three subsets with equal sum must sum to

. The added value must be in one of the three subsets, and it

must be alone in that subset. Thus the other two sets each sum to

(which equals), and they form a partition of . Thus the answer

to Partition on is “Yes”.

Thus the transformation is answer-preserving.

Marking:

Part (a): Essential points:

Decision problem 1 mark

Yes answers verifiable 2 marks

Verification in polynomial time 2 marks

Part (b):

Polynomial time transformation 3 marks

Answer-preservation

Correct proof 7 marks

Incorrect or incomplete proof 3 marks

Claim without proof 1 mark

Note that the transformation needs to deal with all possible

instances of Partition. My answer separates out sets with an odd

total sum – student answers may deal with this differently but it

must be true that the constructed instances of T contain only

integers.

	TOTAL

