
Greedy Algorithms

Suppose we are planning a trip from Kingston to Montreal (and suppose there is

only one road so we don’t have a choice of which route to take).  Our car will 

need several stops to fill up the gas tank.  We know the location of all the service

stations on the highway between Kingston and Montreal, and we know exactly 

how far we can travel on a tank of gas.  We want to minimize the number of 

stops we make along the way.

The intuitive solution, of course, is to go as far as possible on each tank - that is, 

stop at a service station iff we can't make it to the next one.  It turns out that in 

this case intuition can be trusted - this is exactly the right solution.

But how can we ...

- prove that this algorithm always finds the correct solution?

- determine the computational complexity of this algorithm?

We can formalize this idea into an algorithm as follows. I'll show a recursive 

formulation first – here we will define a function RT(i) which is supposed to find

an optimal solution when we are leaving station  with a full tank of gas ... 

RT(0) will give us the complete solution.

We will assume that the problem has a solution (ie that there is no gap between 

consecutive stations that exceeds the distance we can travel on one tank of gas ...

so when we fill up, we know we can reach the next station).  It is easy to test to 

make sure this condition is satisfied.  If it is not, we can immediately conclude 

there is no solution – we are done.



1.  Sort the stations according to how far they are from Kingston
    Let S = { } be the sorted set, with  = 
Kingston and  = Montreal

2.  def RT(i)  # i is the number of the station we are leaving 
# with a full tank

    # We know we have enough gas to reach the next station
t = i+1

     

     while t  n+1  and station  is reachable
          # ignore station t
          t++

if t == n+1:   STOP # we have reached Montreal
     
     else :

fill up at station 
     RT(t)

We find the solution by calling RT(0)

To complete our consideration of this problem, we need to do several things:

1.  Show that the problem does have an optimal solution (some problems don't, 

either because there is no solution or there is no bound on the value of the 

potential solutions).

2.  Show that the greedy algorithm finds an optimal solution.

3.  Determine the complexity of the algorithm.

First, once the stations are sorted we can easily determine if there are any 

feasible solutions: the trip is possible iff there is no gap between stations too 

long for us to cover on one tank of gas.  Assuming then that there are feasible 

solutions, it is clear that there is at least one optimal solution since we can rank 

all the feasible solutions according to their cardinality and choose one with 

minimum cardinality.

It is also clear that the algorithm will find some solution to the problem:  it never

lets us run out of gas, and it gets us to the destination.



Let's also dispose of the complexity question:  sorting the n stations takes 

O(n*log n) time.  Choosing the stations where we stop takes O(n) time since we 

look at each station exactly once, and decide in constant time whether or not to 

stop there.  Thus the entire algorithm takes O(n*log n) time ... or just O(n) if the 

stations are given to us already sorted.

Now the proof of correctness.  This is the interesting part.  We use Proof by 

Induction.  This proof is slightly more formal than the presentation in class, but 

the logic is identical.

Let n  be the number of stations between Kingston and Montreal.

    Base Case:  If n = 0, there are no possible stops between Kingston and 

Montreal.  If there is any feasible solution (ie if we can reach Montreal on a 

single tank), then the algorithm's action is correct (it makes no stops before 

Montreal).  Thus for n = 1 the algorithm finds an optimal solution. 

    Inductive Hypothesis

       We assume that the algorithm finds an optimal solution when we have a full

tank and the number of service stations still ahead of us is    k, for some k   0

    Inductive Step

Suppose there are k+1 service stations still ahead of us and we have a full tank 

when we leave Kingston.

Let the algorithm’s solution be  = { } ... the solution lists the 

stations chosen for stops.  So  is the first stop and  (Montreal) is the last.

First we show that there exists at least one optimal solution that starts with the 

algorithm's first choice.  To do this, let O be some optimal solution to the 

problem, i.e. O = { } where each element is a station where we should 

fill up with gas, in order.  Note that  since the trip must end in 

Montreal.



Consider   :  the algorithm's first stop.  From the definition of the algorithm we 

know it is not possible to reach   on the first tank of gas. Therefore     

But now consider , the second stop in O.  It must be reachable from   ... 

which means it is also reachable from .  Thus we can create a new feasible 

solution:

Let O* = { }  

Note that |O*| = |O|, so O* is also optimal.  Thus there is an optimal solution 

that contains .

Now we know that the algorithm's first decision is 'safe' - ie there is at least one 

optimal solution that matches this decision.

When we make a decision about the first stop, the problem reduces in size         

to   k (i.e. the number of remaining stations between us and Montreal is 

reduced, and our tank is full again). By the IH, the algorithm will find an 

optimal solution to this reduced problem.

The last step of our proof is to show that when we combine the algorithm's first 

choice with its solution to the reduced problem, we get an optimal solution to 

the original problem.  

We know that there is at least one optimal solution that matches the algorithm's 

first choice   – we identified O* above as one such, so let’s use that one again: 

O*  = { }.    

    

    Let the algorithm's solution be  = { }, as before.  



    Due to the structure of the algorithm, we know  is a feasible solution.

Observe that { } and { } are both solutions to the problem of 

getting from station  to Montreal, based on the decision made to fill up at 

station .  In fact, we know { } is an optimal solution to this reduced 

problem of getting from station  to Montreal.  

Thus |{ }|  |{ }|.    Since adding   to both these sets gives

 and O*  , it is clear that | |  |O*|.  Thus   is also an optimal solution.

This completes the proof that RT(0) finds an optimal solution to the Road Trip 

problem.

Based on this example we can state the general Greedy Algorithm paradigm:

The fundamental principle of greedy algorithms is "take the best thing first".

More formally, suppose we are trying to solve an optimization problem that 

involves choosing objects from a set, subject to some feasibility constraint.  We 

want to choose the objects that will maximize (or minimize) the total value of 

the solution, while satisfying the constraint.  The Greedy Paradigm looks like 

this:

1.  Sort the objects according to some criterion

2.  repeat

       select the next item in the list if it does not violate the feasibility constraint

     until no more selections can be made



For the Road Trip problem, the algorithm can be phrased as

1.  Sort the objects according to the distance from the start

2.  repeat

skip the next station if that doesn’t cause us to run out of gas

     until we reach the destination

Our original goal was to minimize the number of stations we stop at ... but this 

is exactly equivalent to maximizing the number stations we skip.

The Greedy Algorithm is such a simple idea that we cannot expect it to find 

optimal solutions for all problems (for example, it is very easy to define greedy 

algorithms that find solutions to some instances of NP-Complete problems ... 

but there will be instances of the problem for which the algorithm's solutions 

won't be optimal).  

However, there is a huge class of problems for which simple greedy algorithms 

will always find the optimal solution.  This means that our big job with respect 

to Greedy Algorithms will not be coming up with the algorithm, but finding a 

proof that the algorithm gives the optimal solution for all instances of the 

problem.


